
2012 Iverson Computing Science Competition
May 30, 2012

Answer key and marking guide.

Please write clearly!
If we cannot read your writing, we cannot give you marks.

Question Question Name Part a Part b Part c Total
Marks out of

2 3 5 10

1 Telephone alphabetics

2 Chairlift

3 Points on Polygon’s Boundary

4 Average Speed

TOTAL

Iverson Exam 2012 2

Exam Format

This is a traditional 2 hour paper and pencil exam. It consists of four questions with each
question consisting of three parts. Part a) of each question typically asks you to solve a specific
instance of the problem by hand, and it is recommended for everyone. Parts b) and c) are more
challenging.

Even students who have just started their work in Computing Science should be able to do
reasonably well on part a) of each question. Parts b) and c) of each question require some more
problem solving skills. Solve as many parts of as many questions as you can.

Programming Language

The parts of the questions that require programming can be answered using any programming
language you wish (for example, VB, C/C++, Java, or Perl). You can also use pseudo-code. Be
sure to provide an adequate amount of detail so the markers can determine if your solution is
correct. Pseudo-code should be detailed enough to allow for a near direct translation
into a programming language.

Our primary interest is in your higher order thinking skills rather than your code wizardry.
A demonstration of logical thinking and systematic problem solving approaches will count for
more than a mastery of syntax of one particular language. Still, you will have to use some type
of programming language or pseudo-code to demonstrate what you can do. Minor syntactical
errors will be ignored. Add comments where needed to clarify your code.

Suggestions

1. Read the problem descriptions carefully. To get full marks you have to meet all problem
specifications for the parts of the questions you attempt. You can assume that only valid
input will be entered by the user. You do not need to include out-of-range or data type
error checks for the input to your programs.

2. Where feasible, sample executions of the desired program have been included. Review the
samples carefully to make sure you understand the specifications. The samples can also
give you hints as to how to proceed.

3. We strongly recommend that you do some design work prior to writing any code. Use
pseudo-code, diagrams, tables or any other aid to help you plan your code. We will
be looking at your rough work and you can get marks for it. We are looking for the
key computing ideas, not specific coding details. In particular you can invent your own
“built-in” functions for subtasks such as reading the next number, or the next character
in a string, or loading an array. Just make sure you specify those functions by giving a
relationship between their inputs and outputs.

4. Take a look at all of the questions before deciding which ones to attempt, and in which
order. Start with the easiest parts of each question. It is OK to do the questions out of
the presented order.

5. Make sure to include English language comments to explain non-obvious or “clever” parts
of your solution.

Iverson Exam 2012 3

Question 1: Telephone alphabetics

A telephone set has many buttons as shown in the figure below. On certain occasions, for
example, when texting or when the user wishes to add a new name to the private phone directory
stored in the telephone set, some of the buttons are used in alphabetical entry mode.

In alphabetical entry mode, the user can
enter a certain letter by pressing the
corresponding digit key as many times
as the position (in left-to-right order)
of the desired letter on that particular
key. For example, pressing the key 7
once means a P, whereas pressing the
same key four times means an S. The
key is used to separate successive let-
ters. However, pressing the # key be-
tween two letters may be omitted when
it is clear where one letter ends and the
next one begins.

Here are some examples with the details of encoding explained below.

Key strokes—input Text generated—output

Example 1 44488833777#777766666 IVERSON

Example 2 3399#26 EXAM

Example 3 6#666#663399982555557777 MONEYTALKS

Example 4 3#332223366222999729997777 DECENCYPAYS

• The input contains one line which contains one or more characters.

• The only visible characters that may appear in the input are the digits 2 through 9 and
the pound character #. There will be no leading or trailing blank spaces or tabs in the
input.

• The first character of every line will be a digit. The last visible character of every line will
be also a digit.

• Each digit or # in the input will be interpreted by your program as a keystroke on the
above telephone set in alphabetical entry mode.

• The output line consists of the alphabetical interpretation of the input line in upper case
letters.

• The separator # between letters may be omitted between two digits that are different. For
example, in the first line of the sample input above, the separator between 33 and 777

has been omitted and inserting a separator at this point would not affect the output. On
the other hand, in the second input line, you see a redundant separator between 99 and
2. Removing this separator will not affect the output.

Iverson Exam 2012 4

• The separator # between letters may also be omitted in the case of a ”long” stream of the
same digit: a stream of more than four occurrences of 7, more than four occurrences of 9,
or a stream of more than three occurrences of one of the other digits. For example, in the
first line of the above input, there is a stream of five 6’s. Inserting a separator after the first
three 6’s would not affect the output. Similarly, in the third line of the above input, remov-
ing the separator between the three 6’s and the two 6’s would not affect the output. More
generally, in case of a long stream of 6’s (or of any other digit except 7 or 9), a separator
could be inserted after every third 6 (starting from the left), without affecting the out-
put. For example, 99996666666666666666 is equivalent to 9999666#666#666#666#666#6,
which would produce the output ZOOOOOM. The same rule applies to long streams of 7’s or
9’s, with ”three” replaced by ”four.”

• The input will not contain two or more consecutive separators.

Question 1, Part a:

• Write down two different sequences of keystrokes which produce the following text.

THEGAMEISAFOOT

Answer. For example these two but there are many others as all pound signs are optional.

8443342633444777723336666668

8#44#33#4#2#6#33#444#7777#2#333#666#666#8

• What is the text produced by the following keystrokes?

333444777#7777877776662225577778443366777744666337777

Answer.

FIRSTSOCKSTHENSHOES

• What is the text produced by the following keystrokes?

626675552667777466635552884#447777

Answer.

MANPLANSGODLAUGHS

Question 1, Part b:

How many different sequences of input keystrokes can generate IVERSON?
Answer.

444 888 33 777#7777 666 66

? ? ? ? ?

There are 5 places where an optional # can be placed which results in 25 = 32
different keystroke sequences that produce IVERSON.

Iverson Exam 2012 5

Question 1, Part c:

Write a program which reads an input line and produces the desired output as described above.

Below is a solution by one of our teams in 2001.
Give some marks for any evidence of a reasonable idea expressed in whatever notation.

#include <stdio.h>

char line[10000];

int main() {

char *alpha[]= { "ABC","DEF","GHI","JKL",

"MNO","PQRS","TUV","WXYZ"};

int i, count;

while(fgets(line,9000,stdin)) {

for (i = 0; line[i] != ’\0’ && line[i] != ’\n’; i+= count) {

if (line[i]==’#’) {

count = 1;

continue;

}

for (count = 1; line[count+i]==line[i];) count++;

if (line[i]==’7’ || line[i]==’9’) {

if (count > 4) count = 4;

} else {

if (count > 3) count = 3;

}

printf("%c",alpha[line[i]-’0’-2][count-1]);

}

printf("\n");

}

return 0;

}

Iverson Exam 2012 6

Question 2: Chairlift

A chairlift is used to transport skiers up the mountain. The figure below shows the components
of a chairlift, viewed from the air above the chairlift.

Direction of motion

18 17 16123456

7 8 9 10 11 12 13 14 15

Loading station

Mountain bottom

Unloading station

Mountain top

Figure 1: Components of a chairlift.

• A closed-loop steel cable is in continuous motion around two rotating wheels: one at the
bottom, one at the top of the mountain.

• There are N equally spaced chairs suspended from the cable. N is an even integer,
18 ≤ N ≤ 300. In Figure 1, N = 18. The chairs are shown as short dashes across
the cable. You must understand that Figure 1 is a snapshot, i.e., that the chairs are in
continuous motion along with the cable.

• The circumference of each wheel at the end of the chairlift is equal to the distance between
adjacent chairs.

• Passengers ride up in the chairs on the upward bound side of the lift; the chairs come back
down empty on the downward bound side.

• The loading station (see Figure 1) is located on the lift’s upward bound side, at the point
of tangency between the cable and the wheel at the bottom of the mountain. When a chair
goes by the loading station, passengers will quickly board the chair; the chair doesn’t stop.
Each chair is actually a bench, it can hold up to four people, i.e. we have a quad-chair.

• The unloading station (see Figure 1) is also located on the lift’s upward bound side, at
the point of tangency between the cable and the wheel at the top of the mountain. When
a chair goes by the unloading station, passengers will quickly get off the chair; the chair
doesn’t stop.

• The chairs are numbered in the order in which they appear at the loading station when the
lift is first activated in the morning. That is, they are numbered starting at 1, increasing

Iverson Exam 2012 7

sequentially in a direction opposite to the direction of motion. Figure 1 shows chair
numbers for the case N = 18. Remember that the figure is just a snapshot, the chairs are
in continuous motion.

• An upward bound chair and a downward bound chair meet when they are exactly opposite
each other, i.e., both chairs are equidistant from the top of the mountain. At the instant
shown in Figure 1, no two chairs meet, but very soon thereafter, chairs 6 and 7, as well as
chairs 5 and 8, etc., would meet.

Question 2, Part a:

Consider a chairlift with 18 chairs as in Figure 1 at the instant when chair 1 meets chair 10.
Complete the following table.

Chair 1 2 3 4 5 6 7 8 9

Meets chair 10 9 8 7 6 5 4 3 2

Does it matter which direction chair number 1 is going?

Answer No.

Question 2, Part b:

Two friends, whom we shall call Bob and Alice, are out for a day of skiing. They are just
riding up in chair 56 and know that the lift has 126 chairs. Alice notes that their chair meets a
downward bound empty chair number 71. Complete the following table.

Chair 56 1 15 33 87 92 111

Meets chair 71 126 112 94 40 35 16

Iverson Exam 2012 8

Question 2, Part c:

Now that you are familiar with the chairlift operation, it is time to state the programming
problem.

Two friends, whom we shall call Bob and Alice, are out for a day of skiing. They are just
riding up in chair 56 and know that the lift has 126 chairs. They also know that the ride from
the loading station to the unloading station takes exactly 225.0 seconds. Bob asks Alice: How
much longer will the ride take? Alice doesn’t look at her watch. Instead, she waits until their
chair meets a downward bound empty chair, notes that the number of that chair is 71, and
replies: We have 198.9 more seconds to go.

Your program will carry out Alice’s computations.
The first line of the input file will contain N , followed by T . N is an even integer, 18 ≤ N ≤

300. T (the time it takes to ride from the loading station to the unloading station) is a floating
point number, measured in seconds, 200.0 ≤ T ≤ 999.9. The first line will be followed by one
or more additional lines of input. On each of these additional lines, there will be exactly two
integer values in the range 1..N , representing two distinct chairs. The first of these chairs is
the upward bound chair in which Bob and Alice are riding. The second chair is the downward
bound chair they meet when Alice announces the remaining time.

After displaying N and T , your program will produce one line of output, containing the two
chair numbers and the remaining time, for each pair of chairs in the input.

Sample Input

126 225

56 71

31 120

100 53

Sample Output

N = 126, T = 225.0

Chair 56 meets chair 71, remaining time = 198.9

Chair 31 meets chair 120, remaining time = 65.7

Chair 100 meets chair 53, remaining time = 83.7

Iverson Exam 2012 9

(Space for answering Question 2, Part c.)

A solution by our first team of 2000.
Give some marks for any evidence of a reasonable idea expressed in whatever notation.

#include <stdio.h>

#include <stdlib.h>

double N,T;

double d;

int a,b;

int main() {

scanf(" %lf %lf ",&N,&T);

printf("N = %3.0f, T = %5.1f\n",N,T);

while(scanf(" %d %d ",&a,&b) == 2) {

if (a < b) {

d = (N - (b-a) - 0.5)/2.0;

} else {

d = (a-b-0.5)/2.0;

}

printf("Chair %3d meets chair %3d, remaining time = %5.1f\n",

a,b,T/((N-1)/2)*d);

}

return 0;

}

Iverson Exam 2012 10

Question 3: Points on Polygon’s Boundary

In geometry a simple polygon is defined as a flat shape, consisting of straight, non-intersecting,
line segments that are joined pair-wise to form a closed path. If the sides intersect then the
polygon is not simple. The qualifier “simple” is frequently omitted, with the above definition
being understood to define a polygon in general.

Mathematicians typically use “polygon” to refer only to the shape made up by the line
segments, not the enclosed region, however some may use “polygon” to refer to a plane figure
that is bounded by a closed path, composed of a finite sequence of straight line segments (i.e.,
by a closed polygonal chain). The closed chain of adjacent line segments is then called polygon’s
boundary.

The definition given above ensures the following properties:

• Polygon’s boundary encloses a region (called its interior) and the region always has a
measurable area.

• The line segments that make-up a polygon (called sides or edges) meet only at their
endpoints, called vertices (singular: vertex) or less formally “corners”.

• Exactly two edges meet at every vertex.

• The number of edges always equals the number of vertices.

D

A

B

C

Figure 2: A sample polygon on a grid.

Given a simple polygon constructed on a grid of equal-distanced points (i.e., points with
integer coordinates) such that all the polygon’s vertices are grid points, Pick’s theorem provides
a simple formula for calculating the area A of this polygon in terms of the number i of grid
points in the interior of the polygon and the number b of grid points placed on the polygon’s
boundary:

A = i +
b

2
− 1.

In the quadrilateral ABCD of Figure 2 we have i = 7, b = 8 and by simple inspection you can
check that A = 10.

Iverson Exam 2012 11

Consider a problem which is of big interest to forresters: how to find the number of grid points
in the interior of a grid polygon? We can solve the problem using Pick’s theorem if we know the
area of the polygon and the number of grid points on the polygon’s boundary. It turns out, that
the area of a simple polygon can be easily computed by methods of computational geometry
but essentially we will not be concerned with computing areas of polygons here. We will focus
on the remaining problem of how to find the number of grid points on the polygon’s boundary.

Question 3, Part a:

The quadrilateral of Figure 2 can be seen as drawn on the grid with x, y-coordinates and the
point (0, 0) being the lowest left corner of the shown grid. We identify the labeled points with
their planar coordinates and thus obtain A = (2, 1), B = (5, 4), C = (5, 6)), and D = (1, 4).

Now imagine, that each coordinate of every point has been doubled and we obtain a new
quadrilateral A′B′C ′D′ with A′ = (4, 2), B′ = (10, 8), C ′ = (10, 12), and D′ = (2, 8).

What is the area of the quadrilateral A′B′C ′D′?

Answer. Since the linear dimensions of ABCD increase by factor of 2, the area increases by
factor of 22. The area of A′B′C ′D′ is 22 · 10 = 40.

How many grid points are on the boundary of A′B′C ′D′?

Answer. 16, which is twice as many as boundary points in ABCD.

How many grid points are in the interior of A′B′C ′D′?

Answer. The answer is obtained from Pick’s formula which for quadrilateral A′B′C ′D′ with
area 40 and b = 16 gives 40 = i + 16

2
− 1 resulting in i = 33.

Iverson Exam 2012 12

Question 3, Part b:

Given points A = (xa, ya) and B = (xb, yb) on an integer grid. Write a piece of code computing
how many grid points are located on the line segment AB.

Answer. 1 + gcd(|xa − xb|, |ya − yb|)

Give marks for noticing that gcd enters the picture here. Students may not have met gcd yet
but some of them can come up with the right idea.

Iverson Exam 2012 13

Question 3, Part c:

Write a program for finding the number of grid points located on the boundary of a polygon
whose vertices are located on grid points. Note that by definition, the vertices of such a polygon
are located on the polygon’s boundary.

The input consists of a description of a grid polygon, given as a sequence of 2∗N +1 numbers.
The first number is N itself and then N pairs of numbers follow. Each pair of numbers gives
the grid coordinates of a polygon vertex, and adjacent pairs of numbers define adjacent vertices.
The last and the first vertex listed are adjacent.

The output of your program contains one number: the number of grid points on the polygon
boundary. The sample input and output given below concerns the polygon of Figure 2.

Sample Input

4 2 1 5 4 5 6 1 4

Output for Sample Input

8

The solution: one loop through input vertices (note the need for wraparound) calling the
solution to Part b at each iteration.

Give marks for whatever idea like the expected.

Iverson Exam 2012 14

Question 4: Average Speed

You have bought a car in order to drive from Red Deer to a big city. The odometer on the car is
broken, so you cannot measure distance. But the speedometer and cruise control both work, so
the car can maintain a constant speed which can be adjusted from time to time in response to
speed limits, traffic jams, and border queues. You have a stopwatch and note the elapsed time
every time the speed changes. From time to time you wonder, How far have I come?. To solve
this problem you must write a program to run on your laptop computer in the passenger seat.

The input contains several lines

• Each speed change is indicated by a line specifying the elapsed time since the beginning
of the trip (hh:mm:ss in a 24 hour clock), followed by the new speed in km/h.

• Each query is indicated by a line containing only the elapsed time.

At the outset of the trip the car is stationary. Elapsed times are given in non-decreasing order
and there is at most one speed change at any given time. Note the cycling nature of a 24 hour
clock. The time elapsed between two consecutive time readings is shorter than 24 hours.

For each query in the input, you should print a line giving the time and the distance traveled,
in the format below.

Sample Input

00:00:01 100

00:15:01

00:30:01

01:00:01 50

03:00:01

03:00:05 140

Output for Sample Input

00:15:01 25.00 km

00:30:01 50.00 km

03:00:01 200.00 km

Question 4, Part a:

What should be the output of the program for the following input?

16:00:00 80

17:15:00

17:30:00 60

18:00:00

Answer.

17:15:00 100.00 km

18:00:00 150.00 km

Iverson Exam 2012 15

Question 4, Part b:

What should be the output of the program for the following input?

16:00:00 10

22:30:00

23:30:00 40

01:30:00

02:45:00

03:00:00 0

23:00:00 20

01:30:00

Answer.

22:30:00 65.00 km

01:30:00 155.00 km

02:45:00 205.00 km

01:30:00 265.00 km

Iverson Exam 2012 16

Question 4, Part c:

Write a program that reads input and produces output as described above.

#include <stdio.h>

main(){

int hh, mm, ss, speed=0, newspeed, i, j, k, n, time = 0, now, now1;

char buf[10000];

double dist = 0;

while (gets(buf)) {

n = sscanf(buf,"%d:%d:%d %d",&hh,&mm,&ss,&newspeed);

now = hh*3600 + mm*60 + ss;

now1 = now + (now < time ? 86400 : 0);

dist += (now1 - time) / 3600.0 * speed;

time = now;

if (n == 3) printf("%02d:%02d:%02d %0.2lf km\n",hh,mm,ss,dist);

else if (n == 4) speed = newspeed;

else printf("oops!\n");

}

}

Give some marks for any evidence of a reasonable idea expressed in whatever notation.

