
Iverson computing competition
2018 may 23

name

school

city

grade

cs teacher

are you taking AP computer science? (yes/no)

are you taking IB computer science? (yes/no)

illegible answers will not be marked
keep answers brief and to the point

question - - - - marks your score

1 toothpaste 6

2 run length encoding 7

3 shuffle 6

4 bin packing 9

5 interesting 12

total - - - - 40

Exam prepared by Zachary Friggstad

Iverson exam 2018 2

Exam Format

This is a two-hour paper and pencil exam. There are five questions, each with multiple
parts. Some part(s) might be easy and the weight of a part does not always reflect the
difficulty of the part. Solve as many parts of as many questions as you can.

Programming Language

Questions that require programming can be answered using any language (e.g. C/C++,
Java, Python, . . .) or pseudo-code. Pseudo-code should be detailed enough to
allow for a near direct translation into a programming language. Clarify
your code with appropriate comments. For full marks, an answer must be correct,
well-explained, and as simple as possible.

Our primary interest is in thinking skill rather than coding wizardry, so logical think-
ing and systematic problem solving count for more than programming language knowl-
edge.

Suggestions

1. You can assume that the user enters only valid input in the coding questions.

2. In somes cases, sample executions of the desired program are shown. Review the
samples carefully to make sure you understand the specifications. The samples
may give hints.

3. Design your algorithm before writing any code. Use any format (pseudo-code,
diagrams, tables) or aid to assist your design plan. We may give part marks
for legible rough work, especially if your final answer is lacking. We are looking
for key computing ideas, not specific coding details, so you can invent your own
“built-in” functions for simple subtasks such as reading the next number, or the
next character in a string, or loading an array.

4. Read all questions before deciding which ones to attempt, and in which order.
Start with the easiest parts of each question.

5. Use the reverse side of the exam sheets for longer answers. Clearly indicate when
you have done so, so we don’t miss it when grading.

6. Some parts ask you to write a function to solve a problem. You may use additional
“helper” functions.

Iverson exam 2018 3

question 1: toothpaste

Kids are quite inefficient at using toothpaste: they only use some of the toothpaste in
each tube before they discard it. They claim it is too difficult to get the last part out.

Rather than help them squeeze the last part out, one could combine the contents of
discarded tubes to create new tubes. In particular, for some integer k ≥ 2 one could
do the following. For every k tubes of toothpaste the kids discard, create a new tube
of toothpaste.

Suppose a particular household starts with n tubes of toothpaste (a bulk pack from
Costco). Let num_tubes(n, k) be how many tubes the kids will end up using overall
when starting with just these n tubes, assuming every k tubes they discard will be
combined into a new tube that will also be used.

example: num_tubes(2, 2) is 3. After the initial n = 2 tubes are used, the parents
combine them into one more new tube

example: num_tubes(3, 2) is 5. After the initial n = 3 tubes are used, the parents
combine two of them into a new tube. Once this tube is used, the parents combine it
with the remaining leftover tube from the initial tubes to create one final tube.

(a) [2 marks] Compute the following:

• num_tubes(4, 2)

Solution: 7

• num_tubes(7, 3)

Solution: 10

• num_tubes(23, 4)

Solution: 30

• num_tubes(173, 90)

Solution: 174

Iverson exam 2018 4

(b) [3 marks] Provide an implementation of the function num_tubes(n, k).

Solution You can just simulate the process.

def num_tubes(n, k):

used = n

empty = n

while empty >= k:

empty -= (k-1) # use k empty tubes to create one new tube

used += 1

return used

(c) [1 marks] Show how to compute num_tubes(n, k) using a simple one-line expression
(no loops).

Solution Look carefully at the previous solution. After the initial n tubes, the question
is really how many times we can subtract k − 1 from n until it is less than k.

So the answer is just n/(k− 1) rounded down if k− 1 does not divide n. But if k− 1
divides n then it is n/(k − 1) − 1 (i.e. we had to stop the process once we reached
k − 1 remaining tubes, not when we reached 0). We can capture both cases by simply
(n− 1)/(k − 1) rounded down. Or, in terms of the original question about toothpaste,
the answer is

n +
n− 1

k − 1
rounded down

Iverson exam 2018 5

question 2: run length encoding

A very simple algorithm to compress a string of letters is to replace consecutive se-
quences of the same characters by a number indicating how many occurrences there are
of the letter. One does this by breaking a string into the maximal substrings consist-
ing of consecutive occurrences of the same character (an example follows). That is, all
characters in a substring must be the same, each substring needs at least one character,
and characters just before and after the substring (if any) should be different than the
character in the substring.

Each such substring is then replaced by first the length of the substring followed
by the common character, but only if this produces a shorter string. Finally, these
replacement strings are concatenated to form the compressed string.

example
Beginning with string str = aaaaabbbcbbbbaacccccccccccc:

• Break str into substrings aaaaa, bbb, c, bbbb, aa, cccccccccccc.

• Respectively, replace these with substrings 5a, 3b, c, 4b, aa, 12c.

• Form the compressed string 5a3bc4baa12c.

(a) [1 marks] Encode the following strings using this algorithm.

• bbbbbbaaaaccccccccccdddaaaaa

Solution: 6b4a10c3d5a

• abbabbaabbbaba

Solution: abbabbaa3baba

(b) [1 marks] Each string below is a compressed string. For each, find the string consist-
ing only of lowercase letters that would produce the corresponding compressed string.

• 7c3a5c3a

Solution: cccccccaaacccccaaa

• 3babb4a5baab

Solution: bbbabbaaaabbbbbaab

Iverson exam 2018 6

(c) [2 marks] Write a function compress(txt) that takes, as input, a single string txt

and returns the string obtained by compressing txt according to the above algorithm.
You may assume, without checking, that txt only contains lowercase letters (in partic-
ular, it has no spaces, punctuation, digits, or uppercase letters).
Solution

def compress(txt):

at = 0 #index into the unprocessed part of the string

output = ""

while at < len(txt):

next = at

while next < len(txt) and txt[next] == txt[at]:

next += 1

if next > at+2:

output += str(next-at) + txt[at]

else:

output += txt[at:next]

at = next

return output

Iverson exam 2018 7

(d) [3 marks] Write a function decompress(enc) that takes, as input, a single string enc

and returns the string txt consisting only of lowercase letters such that compress(txt)
== enc. You may assume such a string txt exists. You may use, without providing
the implementation, functions isletter(c) and isdigit(c) to check if a character c

is a letter or a digit (and similar functions, if desired).
Solution
First is a simpler implementation that works if every number is ≤ 9. It is not a complete
solution, but it illustrates the point.

def decompress(enc):

at = 0

output = ""

while at < len(enc):

if enc[at].isdigit():

output += enc[at+1]*(int(enc[at]))

at += 2

else:

output += enc[at]

at += 1

return output

A complete solution reads off digits from the current position until it encounters a letter
(to get the whole number). Here is one way to do it.

def decompress(enc):

at = 0

output = ""

while at < len(enc):

char_pos = at

read off the digits starting at position "at"

while enc[char_pos].isdigit():

char_pos += 1

if char_pos == at:

if we read no digits, use a single character

num = 1

else:

else, get the number

num = int(enc[at:char_pos])

either way, the character is at index char_pos

output += enc[char_pos]*num

at = char_pos+1

return output

Iverson exam 2018 8

question 3: shuffle

A common feature of music players is to “shuffle” the songs: to play them in random
order. Consider the following pseudocode that shuffles a playlist with just three songs.
For brevity, the songs will be called A, B, and C.

songs = ["A", "B", "C"]

for i from 0 to 2

swap(songs[i], songs[random(3)])

Here, swap is a function that exchanges the values of the two variables and random(3)

picks and returns either 0, 1, or 2 uniformly at random (i.e. each has probability
1/3 of being chosen). Unfortunately, this is not a good shuffling algorithm! Some
rearrangements are more likely than others.

(a) [1 marks] How many different rearrangements of the array songs are there? List
them all.
Solution: There are 6. ABC, ACB, BAC, BCA, CAB, CBA:

(b) [2 marks] What is the probability of the song "C" being first in the rearrangement
when the array is shuffled using the code above? Express as a fraction for full marks.
It will not be 1

3
, as one would expect if all rearrangements were equally likely.

Tip: Consider all ways that C could be put in the first position by the algorithm and
add their probabilities.
Solution: 8/27. Here are the possible ways:

• C is initially swapped to the start and then never swapped out again.
Probability = 1

3
· 2
3
· 2
3
.

• C is not swapped out of the last position until the very end, when it is swapped
to the first position.
Probability = 2

3
· 2
3
· 1
3
.

You can check carefully that these are the only ways have C be moved to the start.

Iverson exam 2018 9

(c) [3 marks] Describe how to shuffle an array of arbitrary length n ≥ 1 so each possible
arrangement is equally likely. You can either provide pseudocode or a brief written
description. Provide a brief argument to justify why your approach works. For full
marks, your algorithm should perform at most n swaps.

Solution

Below is pseudocode to shuffle an array named array with length n

for i from n-1 down to 1

swap the entry at index i with the

entry at a random index from 0, 1, ..., i

swap(array[i], array[random(i+1)])

We’ll sketch a proper “proof by induction”, though we accepted arguments that were
less formal. For n = 1, there is only one arrangement so (trivially) all rearrangements
are equally likely.

For n ≥ 2, note each item has the same probability (namely, 1/n) of being swapped
to position n−1 in the first iteration. Then the rest of the algorithm behaves identically
on the remaining array. By “induction” (i.e. by repeating the argument for smaller
arrays), each of the (n − 1)! rearrangements of the remaining array are equally likely.
Thus, each of the n! arrangements of the original array are equally likely.

Iverson exam 2018 10

question 4: bin packing

In the bin packing problem, you are given n items of various weights w0, w2, . . . , wn−1 ≥
0. You want to ship these items in containers, but each container can only hold up to
a total weight of C ≥ 0 items. Naturally, you want to ship the items using the fewest
containers possible. You may assume wi ≤ C for each item i.

Unfortunately this is a hard problem; nobody has discovered an efficient algorithm
to solve it. In this question, you will explore some heuristics: fast algorithms that tend
to perform somewhat well but may not always find the best solution.

(a) [2 marks] Consider the following first-fit heuristic. Here, bins is an array repre-
senting the remaining capacity in each bin we have used so far. Initially, this array is
empty because we have not used any bins. We assume the weights are stored in an
array w[], indexed from 0 to n− 1.

bins[] = empty array

for each i from 0 to n-1

find the smallest index j (if any) where w[i] < bins[j]

if no such j exists, append C-w[i] to bins # i.e. add item i to a new bin

otherwise, set bins[j] = bins[j]-w[i] # i.e. put item i in bin j

That is, each item is packed in the first bin that it fits in. If there is no such bin, a new
bin is created (i.e. appended to the end of the array w[]).

Solution Note
There was a typo in the pseudocode. It should have said where w[i] <= bins[j] in
the first line in the loop. We accepted answers that used either the original statement
or the variant with this <= fix. The answers here will use the <= interpretation, the
answer for part (b) would be different under the other interpretation.

(a) [2 marks] How many bins will be used by this heuristic if C = 10 and the array of
weights w[] is 2, 1, 2, 6, 2, 7? Show the contents of the bins after each iteration.

Solution
3 bins will be used.

1. [2]

2. [2, 1]

3. [2, 1, 2]

4. [2, 1, 2], [6]

5. [2, 1, 2, 2], [6]

6. [2, 1, 2, 2], [6], [7]

Iverson exam 2018 11

(b) [2 marks] People have observed the above heuristic often performs better if the
items are first sorted in reverse order. Consider the following algorithm.

sort the items in reverse order (so w[0] >= w[1] >= ... >= w[n-1])

pack the items in bins using the first-fit heuristic (above)

Now how many bins will be used by this heuristic applied to the same case as last part?
Show the contents of the bins after each iteration.

Solution
2 bins will be used.

1. [7]

2. [7], [6]

3. [7, 2], [6]

4. [7, 2], [6, 2]

5. [7, 2], [6, 2, 2]

6. [7, 2, 1], [6, 2, 2]

(c) [2 marks] Find an example showing the algorithm from part (b) does not always use
fewest bins possible to pack the items. Make sure you show the final packing obtained
from the algorithm and a packing using the fewest bins possible.

Solution
One possibility could be if the items have weights 3, 3, 2, 2, 2, 2 and the bin capacity is
7. A packing with two bins is [3, 2, 2], [3, 2, 2] but the first-fit heuristic would use three
bins, namely [3, 3], [2, 2, 2], [2].

Iverson exam 2018 12

(d) [1 marks] The next few parts have you reason that, at the very least, the number
of bins used by the heuristics is somewhat close to the optimum.

Let W = w0 + w1 + . . . wn−1 and let k∗ denote the minimum number of bins such
that it is possible to pack the items into k∗ bins. Briefly explain why W

C
≤ k∗.

Solution
The total capacity of the k∗ bins is exactly k∗ · C. By the definition of k∗, there is

some way to pack all items in k∗ bins so the total capacity of k∗ ·C holds a total weight
of W . Namely, W ≤ k∗ · C.

(e) [1 marks] Briefly explain why the algorithm from part (a) will result in at most one
bin being less than half full (i.e. at most one index j such that w[j] < C/2).

Solution Suppose two bins were less than half full and say these are bins i < j. Then
at the point of the algorithm when some item that was put into j was considered, bin i
was already available and had enough space for the item. More precisely, this item has
weight < C/2 because it is one of the items in bin j. When this item was being added,
bin i has at least C/2 leftover capacity so the item should have been put there instead.

Thus, it is impossible to have more than one bin that is less than half full.

(f) [1 marks] Finally, explain why the number of bins used at the end of the algorithm
from part (a) is at most 2 · k∗ + 1. You may assume any of the statements above, even
if you could not find a good argument.

Solution Say the algorithm used k bins. On one hand, we know W ≥ (k − 1)/2 · C
because at most one of the k bins is less than half full. On the other hand, we know
W ≤ k∗ · C. So,

(k − 1)/2 · C ≤ W ≤ k∗ · C.

Rearranging, this means k ≤ 2 · k∗ + 1. Algorithm (a) is guaranteed to use barely more
than twice the number of bins than the optimum.

Note
The algorithm from part (b) is known to to use at most 11·k∗+6

9
bins, which is even

better than what we saw from (a). But the analysis is far more involved.

Iverson exam 2018 13

question 5: interesting

A bitstring is a string consisting only of characters 0 and 1 and is not the empty
string. A bitstring is said to be interesting if it does not contain three consecutive
occurrences of 0 or three consecutive occurrences of 1.

some interesting bitstrings
1, 00, 00110011, 100110010101001.

some bitstrings that are not interesting
1011101, 000111000111, 111, 101000101101.

all interesting bitstrings of length 4 ending with a 0
0100, 1100, 0010, 1010, 0110.

(a) [1 marks] For n ≥ 1, let f0(n) be the number of interesting bitstrings with length
exactly n that end with 0. We see from the example above that f0(4) = 5.

Compute f0(1), f0(2) and f0(3).

Solution f0(1) = 1, f0(2) = 2 and f0(3) = 3.

(b) [2 marks] Compute f0(5) and f0(6).

Solution f0(5) = 8 and f0(5) = 13.

(c) [3 marks] For n ≥ 3, express f0(n) as a simple function of some values f0(k) for
various k < n.
Hint: Consider the different ways the 0s can appear at the end of a bitstring. Notice
ending with a 0 or 1 does not really matter, the counts would be the same.

Solution
In any interesting bitstring that ends with a 0, either the preceding character is a 1

or the preceding two characters are 10. If we let f1(n) be the number of interesting bit
strings that end with a 1, then we have just seen for n ≥ 3 that

f0(n) = f1(n− 1) + f1(n− 2).

Of course, f1(n) = f0(n) which can be seen by noting we can just flip the bits in all
interesting bit strings of length n ending with a 1 to get all interesting bit strings of
length n that end with a 0. So,

f0(n) = f0(n− 1) + f0(n− 2).

These are just Fibonacci numbers.

Iverson exam 2018 14

(d) [3 marks] Write a function interesting(n) that accepts a single integer n ≥ 1
as a parameter and returns the number of interesting bitstrings of length exactly n
(including ones that end with a 1). For example interesting(3) should return 6. For
full marks, a reasonable implementation of the function you describe would compute
interesting(1000) in less than one second. Do not worry about overflow if you provide
the implementation in a language that only supports fixed-size integers.

def interesting(n):

f = {1:1, 2:2}

for i in range(3, n+1):

f[i] = f[i-1] + f[i-2]

double the answer because f[n] is just f_0(n) from the exercises

return 2*f[n]

(d) [3 marks] Now consider bitstrings with unknown entries: some characters are *.
Write a function can_complete(bitstring) that takes a single string that you may
assume only contains characters 0, 1, and *.

The function should return True if it is possible to replace each * character with
a 0 or 1 so the resulting bitstring is interesting, otherwise the function should return
False. Again, for full marks a reasonable implementation of the function you describe
would finish in less than one second even if the string had 1000 characters.

examples

• can_complete("00**1") returns True. Replacing the first * with 1 and the
second with 0 results in the interesting string 00101.

• can_complete("00*11") returns False because any setting of * would result in
a bitstring that is not interesting.

• can_complete("001*0*1*") returns True. There is more than one way we could
replace the * characters with bits to get an interesting string: one such way is
00110011.

Iverson exam 2018 15

Solution
This was, by far, the most challenging question in the exam. There are a number of
approaches, here is one.
Repeat the following until neither applies.

• If the string already contains 000 or 111, then return False.

• If the string contains *00 or *11, then replace the * with the only valid character
(eg. for *00, replace * with 1).

Once this phase is done, just return True if we did not already return False.
To see why we could return True, just greedily fill in the remaining asterisks in a

left-to-right fashion, where each asterisk would be replaced by the bit that is different
than it’s preceding bit (and if * is at the start, pick anything). For example, if the
string is 00*10**1 then the first * would be replace by 1 (because it follows a 0).

Such a replacement cannot create a triple to the left of the old * because the character
is different than the preceding character. It cannot create a triple to the right of the
old * because we exited the “repeat the following...” loop.

So this process will successfully fill in all * to get an interesting string. Of course,
since you just needed to return True or False you did not actually have to do this.
This is just an argument justifying why you could return True.

The code below does the loop slightly differently, but it results in the same thing: a
string with no *00 or *11 if it does not fail.

def can_complete(bitstring):

‘processed’ will eventually be ‘bitstring’ with asterisks replaced

so *00 or *11 is not a substring, it is built "right-to-left"

processed = ""

for c in bitstring[::-1]: # process characters in reverse order

if c == "*" and processed[:2] == "00":

processed = "1"+processed

elif c == "*" and processed[:2] == "11":

processed = "0"+processed

else:

processed = c+processed

if processed[:3] == "000" or processed[:3] == "111":

return False

return True

