
Iverson computing competition
2017 monday may 29

with solutions

name

school

city

grade

cs teacher

illegible answers will not be marked

question - - - - marks your score

1 divisors 10

2 solitaire 10

3 counterfeit 11

4 teams 10

total - - - - 41

Exam and solutions prepared by Zachary Friggstad and Ryan Hayward



Iverson exam 2017 2

Exam Format

This is a two-hour paper and pencil exam. There are four questions, each with multiple
parts. Solve as many parts of as many questions as you can.

Programming Language

Questions that require programming can be answered using any language (e.g. C/C++,
Java, Python, . . . ) or pseudo-code. Pseudo-code should be detailed enough to
allow for a near direct translation into a programming language. Clarify
your code with appropriate comments. For full marks, an answer must be correct,
well-explained, and as simple as possible.

Our primary interest is in thinking skill rather than coding wizardry, so logical think-
ing and systematic problem solving count for more than programming language knowl-
edge.

Suggestions

1. You can assume that the user enters only valid input in the coding questions.

2. In somes cases, sample executions of the desired program are shown. Review the
samples carefully to make sure you understand the specifications. The samples
may give hints.

3. Design your algorithm before writing any code. Use any format (pseudo-code,
diagrams, tables) or aid to assist your design plan. We may give part marks
for legible rough work, especially if your final answer is lacking. We are looking
for key computing ideas, not specific coding details, so you can invent your own
“built-in” functions for simple subtasks such as reading the next number, or the
next character in a string, or loading an array. Make sure to specify such functions
by giving a relationship between their inputs and outputs.

4. Read all questions before deciding which ones to attempt, and in which order.
Start with the easiest parts of each question.



Iverson exam 2017 3

question 1: divisors

An integer is a whole number, e.g. -17 or 0 or 3926. For integers d, n, say d is a divisor
of n if there is an integer k such that n = k × d. E.g., 7 is a divisor of 21 because
21 = 3 × 7, and −917 is a divisor of 0 because 0 = 0 × −917. For integers x, y, the
greatest common divisor of x and y, written gcd(x, y), is the largest integer d that is a
divisor of both x and y. E.g., gcd(15,12) = 3, gcd(−7,−5) = 1, and gcd(4,0) = 4.

a) [1 mark] List all divisors of 15.

b) [1 mark] List all divisors of −12. Hint: gcd(15,−12) is 3.

c) [1 mark] The value gcd(0,0) is not defined because (circle the best answer)

i) every integer is a common divisor of these two integers
ii) division by zero is not defined
iii) the limit of the minimum integer that divides both tends to minus infinity
iv) any algorithm to compute this gcd will not terminate

def gcd(x,y):

assert(x>0 and y>=0 and x>=y)

ops = 0 # count division/remainder ops

if y==0:

return x, ops

divisors = [] # empty list

for d in range(1,y+1): # d ranges from 1 to y

ops += 1 # ops = ops + 1

if (0 == (x%d)) and (0 == (y%d)): # x%d is remainder of x divided by d

divisors.append(d) # append d to list

return max(divisors), ops

In this code, x%d returns the remainder after integer division x//d. E.g. 15%6

returns 3, since 15 = 2 × 6 + 3. The above function returns gcd(x,y) and the number
of remainder calls. Output from print(15, 12, gcd(15,12) ) is 15 12 (3, 12) .

d) [1 mark] Give the output for print(30, 7, gcd(30,7) ).



Iverson exam 2017 4

def foo(x,y):

assert(x>0 and y>=0 and x>=y)

ops = 0

while y > 0:

ops += 1

x, y = y, x % y # simultaneous assignment x=y, y= x%y

return x, ops

output from print(foo(30,7)): output from print(foo(44,28)):

30

7 2

2 1

1 0

(1, 3)

e) [1 mark] foo(x,y) returns the same values as gcd(x,y), but prints more output, shown
above. Above, give the output from print(foo(44,28)).

f) [2 marks] To show that foo returns gcd(x,y), a useful property is this: for integers
d, x, y, if d divides x and y then d divides x− y. Prove this property.

g) [3 marks] Circle the best answer and explain briefly why your answer is correct.
Hint: for 0 < y < x, (x%y) < x/2. Also, 220 = 1048576.

i) The last line of output from print(foo(832040,514229)) is (1, 8).
ii) The last line of output from print(foo(832040,514229)) is (1, 28).
iii) The last line of output from print(foo(832040,514229)) is (1, 48).
iv) The last line of output from print(foo(832040,514229)) is (1, 68).



Iverson exam 2017 5

question 2: solitaire

Solitaire is a 1-player stone-jumping game. A move (x,y) consists of jumping a stone
over exactly one neighbouring stone into an empty space; the jumped-over stone is
removed. (x,y) represents the jump from location x to y. We use non-negative integers
for locations, so for move (x,y) x−y is +2 or −2 and the stone at location (x + y)//2
is removed. E.g. for the left position below, possible moves are (2, 0), (1, 3), (6, 4).

a position position after move (1, 3) target position

0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6

- x x - - x x - - x x - x x - - - x - - -

The goal of solitaire is to find a a move sequence from start position to target. Such
a sequence is a solution. The target can be any position. E.g. start x-xx- and target
--x-- has solution (3,1), (0,2). E.g. start -xx-- and target --x-- has no solution.

a) [2 marks] For start xx---xx and target ---x---, find a solution or explain why there
is none.

b) [2 marks] Repeat a) for start xxxx--xx, target ----x---.



Iverson exam 2017 6

def legal_moves(brd): # s is stone

moves = []

for j in range(len(brd)-2):

if brd[j] == s and brd[j+1] == s and brd[j+2] != s: moves.append((j,j+2))

if brd[j] != s and brd[j+1] == s and brd[j+2] == s: moves.append((j+2,j))

return moves

c) [1 mark] The above code generates legal moves. E.g. legal_moves(’-xx-xx’) out-
puts [(2, 0), (1, 3), (5, 3)]. Give output from legal_moves(’-x-xx-xx-’).

def solve(brd, target, indent):

print(indent*’. ’ + brd)

if brd==target: return True, []

moves = legal_moves(brd)

if 0==len(moves): return False, []

for m in moves:

b_new = make_move(brd,m)

result, sequence = solve(b_new,target, indent+1)

if result:

sequence.insert(0,(m)) # add m to front of sequence

return True, sequence

return False, []

solve(’-x-xx’, ’--x--’, 0) solve(’-xx-x’, ’--x--’, 0)

-x-xx -xx-x

. -xx-- . x---x

. . x---- . ---xx

. . ---x- . . --x--

(False, []) (True, [(1, 3), (4, 2)])

d) [2 marks] Above is solving code, with two sample outputs.
Show output from solve(’xx-xx’, ’--x--’, 0).



Iverson exam 2017 7

e) [3 marks] Below, show the rest of the output.

for rough work your final answer

solve(’xx-xxx-x’, ’---x----’, 0) solve(’xx-xxx-x’, ’---x----’, 0)

xx-xxx-x xx-xxx-x

. --xxxx-x . --xxxx-x



Iverson exam 2017 8

question 3: counterfeit

You have coins labelled 0 through n − 1. They look the same, but exactly one is
counterfeit: it has a slightly different weight than that of a genuine coin. All genuine
coins weigh the same. You will find the counterfeit using a balance scale.

A weighing consists of putting some number of coins on one side of the scale and
the same number of coins on the other side. The scale then reports either balanced or
unbalanced. When unbalanced, the scale does not report which side is lighter. Your
goal is to find the counterfeit using the fewest weighings.

Example: after the two weighings below, we know that 0,3 are genuine and either 1 or
4 (and so not 2) is counterfeit. So after these weighings we call 1,4 possible counterfeit.

left side right side outcome

0 3 balanced

0 1 3 4 unbalanced

(a) [1 marks] After this weighing sequence, list all possible counterfeits among {0,1,2,3,4}.

left side right side outcome

0 1 2 3 unbalanced

0 2 1 4 unbalanced

4 2 balanced

Possible counterfeit(s):
Explain briefly.



Iverson exam 2017 9

(b) [2 marks] After this weighing sequence, list all possible counterfeits among {0,1,2,. . . ,9}.

left side right side outcome

9 2 7 1 3 8 6 5 unbalanced

1 5 4 3 7 2 0 8 unbalanced

7 0 6 5 balanced

1 2 3 8 4 5 6 7 unbalanced

3 7 2 9 balanced

9 6 8 2 3 5 7 0 unbalanced

Possible counterfeit(s):
Explain briefly.

(c) [1 marks] For 4 coins, explain how to find the counterfeit with at most 2 weighings.

(d) [1 marks] For 6 coins, explain how to find the counterfeit with at most 3 weighings.



Iverson exam 2017 10

(e) [3 marks] Recall that there is exactly one counterfeit. Complete the pseudocode
below: given a sequence of weighings among n coins, print the label ` of each possible
counterfeit (i.e. each ` such that, if ` is counterfeit, then the result of each weighing is
exactly as in res).

# input:

# n - number of coins, m - number of measurements

# lhs, rhs - lists of m measurements

# res - list of m outcomes, "b" for balanced, "u" for unbalanced

#

# output: print the possible counterfeits, in any order

#

# For 0 <= i < m, lhs[i], rhs[i] are lists of coins used in the i’th measurement.

# You may assume lhs[i] and rhs[i] have the same length, only include

# coins from 0 to n-1, and no coin appears in both lhs[i] and rhs[i].

#

# Use len(lhs[i]) to denote the number of coins in lhs[i], etc.

#

# example:

# find_counterfeit(5, 2, [[0], [0,1]] , [[3], [3, 4]], ["b", "u"])

# This corresponds to the first example above.

# output: 1 4

find_counterfeits(n, m, lhs, rhs, res)



Iverson exam 2017 11

(f) [2 or 3 marks]: For any integer k ≥ 2, for n = 2k coins, describe how to find the
counterfeit with at most k weighings. A correct strategy is worth 2 marks if it is adaptive
(i.e. the weighing sequence will vary depending on the results of the weighings), or 3
marks if it is non-adaptive (i.e. the weighing sequence does not depend on the results).
Hint: binary.



Iverson exam 2017 12

question 4: teams

You want to form two soccer teams. Some player pairs prefer to be mates (i.e. team-
mates), some pairs prefer to be opponents, and some pairs have no preference. Given n
players numbered 0 through n− 1 and a list of mate/opponent preferences, you should
assign each player to team A or B so that all preferences are satisfied, if possible. (The
teams do not have to have the same number of players.)

An input instance can be drawn as a graph: each player is a node (circle), each mate
preference is a solid line, each opponent preference is a dashed line.

Example: The left graph shows players and preferences, the right graph also shows
an assignment of players to teams.

AA

BB

AA

A

AA

BB

(a) [3 marks] In each following example, label nodes A or B (exactly one label each) so
preferences are satisfied. If this is impossible, explain using the space beside the graph
(if it helps with your explanation, you may also draw on the graph).

Graph 1

Graph 2



Iverson exam 2017 13

Graph 3

(b) [2 marks] Suppose all edges are dashed, i.e. all preferences are opponents. An
opponent cycle is a sequence of players k1, k2, . . . , kc where ki and ki+1 are preferred
opponents for each 1 ≤ i < c and k1 and kc are also preferred opponents. Say c is the
length of the opponent cycle, so the picture has length 5.

Picture of a cycle:

Describe which opponent cycles of length c ≥ 3 can be partitioned into 2 teams
satisfying all preferences on the cycle. Be clear and concise.

(c) [3 marks] On the next page, describe in pseudocode how to determine if a given
graph of preferences can have its players partitioned into 2 teams so all mate and
opponent preferences are satisfied. Make these assumptions: players are numbered
0 through n − 1; there is a given 2-dimensional array graph indexed from 0 to
n− 1 where graph[i][j] is 1 if i and j are preferred mates, -1 if i and j are preferred
opponents, and 0 if they are have no preference; always, graph[i][i] = 0 for any
player i and graph[i][j] = graph[j][i] for any pair of players i, j.

The output for your program is just possible or impossible, depending on whether
two teams can be formed to satisfy all preferences.



Iverson exam 2017 14

# example, n = 4 and corresponds to graph in part a)

# graph = [

# [ 0, 1, 1, 0],

# [ 1, 0, -1, -1],

# [ 1, -1, 0, -1],

# [ 0, -1, -1, 0]

# ]

can_make_teams(n, graph)

(d) [2 marks] It is not always possible to satisfy all relationships, but we still want
to form two teams. Describe why it is always possible to satisfy at least half of the
preferences. Be clear and concise.



Iverson exam 2017 15

solutions

1a) 1,3,5,15,−1,−3,−5,−15 1b) 1,2,3,4,6,12,−1,−2,−3,−4,−6,−12

1c) i) 1d) 30, 7, (1, 7)

1e) 30 7 (1, 7)

44

28 16

16 12

12 4

4 0

(4, 4)

1f) Assume d divides x and d divides y. Then by definition there exists an integer,
say t, such that x = dt; also, there exists an integers, say w, such that y = dw. So
x − y = dt − dw = d(t − w). Since t and w are integers, t − w is an integer. So there
exists an integer r, where r = t− w, such that x− y = dr. So, by definition, d divides
x− y.

1g) Every two iterations of foo, x is replaced with x%y. So the number of iterations is
at most 2× log2 of x, so at most 40. In the first 8 iterations, x has value 514229 317811
196418 121393 75025 46368 28657 17711, so the number of iterations is more than 8.
So the correct answer is ii).

2a) The only move sequences from xx---xx are --x--xx and then --x-x-- or xx--x--
and then --x-x--, so there is no solution.

2b) One sequence is (2,4), (7,5), (0,2), (5,3), (2,4). There are other correct answers,
e.g. the first two moves can be exchanged, and also the next two.

2c) [(4,2), (3,5), (7,5), (6,8)] is the only correct answer.

2d) xx-xx

. --xxx

. . -x--x

. xxx--

. . x--x-

(False, [])

2e) xx-xxx-x

. --xxxx-x

. . -x--xx-x

. . . -x-x---x

. . . -x----xx

. . . . -x---x--

. . --xx--xx

. . . -x----xx

. . . . -x---x--

. . . ----x-xx

. . . . ----xx--

. . . . . ---x----

(True, [(0, 2), (4, 6), (2, 4), (7, 5), (5, 3)])



Iverson exam 2017 16

3a) 0 and 1
Coins 2 and 4 are balanced (3rd weighing) and 3 is not unbalanced (2nd weighing).

However, 0 or 1 being the counterfeit coin would produce the same outcomes from these
weighings.

3b) 8
The balanced weighings rule out coins 0, 2, 3, 5, 7, and 9 leaving only coins 1, 4, or 8

as possible counterfeits. The last weighing rules out coin 1 and the first weighing rules
out coin 4. So 8 is the counterfeit (and you can check all weighings are consistent with
8 being counterfeit).

3c) Weighing coins 1 and 2 will determine if the counterfeit is one of 1, 2 or one of 3,
4. In either case, weighing coins 1 and 3 will also tell if the counterfeit is one of 1, 3 or
2, 4. Note that for every pair of coins that was determined to contain an unbalanced
coin, precisely one coin lies in both sets. So we uniquely identify the coin.

3d) Weigh coins 1, 2 against coins 3, 4. If this is unbalanced, apply the strategy from
part (c) to these coins. Otherwise, we know either 5 or 6 is counterfeit. So weighing
coins 1 and 5 will identify the counterfeit.

3e) One approach is to try each coin and see if it being counterfeit would produce the
given weighings. Here is working python3 code that solves the problem.

def find_counterfeits(n, m, lhs, rhs, res):

fake = set()

for coin in range(n):

maybe_fake = True

for i in range(m):

if res[i] == "b" and coin in lhs[i]+rhs[i]:

maybe_fake = False

if res[i] == "u" and coin not in lhs[i]+rhs[i]:

maybe_fake = False

if maybe_fake:

fake.add(coin)

print(*fake)

3f) If k = 2 then employ the 4-coin strategy from part (c). Otherwise, if k ≥ 3 pick any
2k−1 coins and weigh them in two equal-size groups (this is possible because k ≥ 3). If
this is unbalanced, discard the other 2k−1 coins not weighed. If this is balanced, discard
these 2k−1 coins.

In either case, we have 2k−1 coins remaining. Iterate this strategy until 4 coins
remain. Each iteration, the number of coins is halved so after k − 2 iterations we are
left with 4 coins, and 2 more weighings will find the counterfeit.

For the full 3 marks, the coins in each weighing had to be determined before actually
performing them.



Iverson exam 2017 17

Here is the trick: number the coins from 0 to 2k − 1 and consider the binary expan-
sion of these numbers. There will be one weighing for each “position” in the binary
expansion. The weighing for bit position i (for 0 ≤ i < k) consists of all coins with a 1
at position i in its binary expansion.

Example: consider k = 4 and coin 13 = 11012 = 23 + 22 + 20. Include coin 13 in
weighings 0, 2 and 3.

There are exactly 2k−1 coins in each weighing and k ≥ 2 so they can be split into two
equal-size groups to determine if the fake coin is involved in that weighing.

The cool part is that if we think of an outcome of balanced as 0 and an outcome of
unbalanced as 1 then forming the binary string of outcomes produces the binary number
of the fake coin!

That is, if coin i is the fake then every weighing including i (corresponding to bit
positions for i with a 1) will be unbalanced and every weighing not including i (corre-
sponding to bit positions for i with a 0) will be balanced.

4a.i) Impossible, the three players connected by solid edges must be on the same team
but this would cause the diagonal opponent edge to not be satisfied.

4a.ii)

B

AA

A B

A

A

4a.iii) Impossible. Consider the sequence of players numbered 1, 2, 3, 4, 5, 6 in the
picture below. If 1 is on team A, then 2 is on team A, so 3 is on team B and so on.
This forces 6 to be on team A, but 1 and 6 are supposed to be opponents.

4

5

6

1 2 3

4b) It is possible if c is even and impossible if c is odd. If c is even, then just alternate
teams around the cycle. If c is odd, we still have to alternate teams around the cycle
but then the first and last player will be on the same team.

4c) Here is the idea.
Suppose for the moment that the entire graph is connected (i.e. player 0 can reach

any other player following a sequence of edges in the graph). Then it does not matter
which team player 0 goes on so we might as well put them on team A. Then iterate
the following process: while there is a relationship i, j where i is on a team but j is not



Iverson exam 2017 18

then put j on the team that would satisfy the relationship. This will put all players on
a team because the graph is connected.

Note this is the only way to assign players to teams given that player 0 is on team
A: our choice for each player assignment was forced by the relationship. Now we just
have to check that all relationships are satisfied.

If the graph is not connected, then we still do the above. But not all players will be
assigned to a team, so repeat the process except choose an unassigned player instead
of player 0 to be initially assigned to team A. Repeat until all players are assigned.

Pseudocode

while some player k is not on a team

team[k] = A

while there is a pair i,j with:

- g[i][j] != 0

- team[i] defined

- team[j] not defined

then assign team[j] to the team A or B to satisfy the relationship g[i][j]

if all relationships are satisfied

output "possible"

else

output "impossible"

(continued on next page)



Iverson exam 2017 19

Here is working python3 code that will correctly solve the problem.

def can_make_teams(n, graph):

team = dict() # team A is 1 and team B is -1

for k in range(n):

if k not in team: # i.e. if team[k] is not yet defined

team[k] = 1

while True: # repeat until no change

found = False

for i in range(n):

for j in range(n):

if graph[i][j] and i in team and j not in team:

found = True # a new team is assigned

team[j] = team[i] * graph[i][j]

if not found:

break # exit the loop, no more changes

ok = True

for i in range(n):

for j in range(n):

if graph[i][j] and team[i] != team[j]*graph[i][j]:

ok = False

if ok:

print("possible")

else:

print("impossible")

4d) Add players to teams one at at time in any order. When considering a new player,
say i, check all preferences it has with players already assigned to a team. Choose the
team for i that satisfies at least half of these preferences. Overall this will satisfy half
of the preferences.


