
2010 Iverson Computing Science Competition

May 25, 2010

Name: ANSWER - edited by P. Rudnicki (May 28, 2010)

+ Marking Guide
School:
City:
Grade:
CS Teacher:

Are you taking AP or IB Computer Science? (Yes/No)

Have you taken Advanced Level courses? These are courses at
the 3000 level such as CSE3110: Iterative Algorithms 1.

(Yes/No/Taking one or more now)

Please write clearly! If we cannot read your writing, we
cannot give you marks.

Question Question Name Part a Part b Part c Total
Marks out of

2 3 5 10

1 Strings

2 The Trip

3 Dick and Jane

4 Polylops

TOTAL

2 Answers - Iverson Exam 2010

Exam Format:

This is a traditional 2 hour paper and pencil exam. It consists of four ques-
tions with each question consisting of three parts. Part a) of each question
typically asks you to solve a specific instance of the problem by hand, and it
is recommended for everyone. Part b) is designed to be relatively easy and
Part c) is more challenging.

Even students who have just started their work in Computing Science
should be able to do reasonably well on part a) of each question. Part b)
of each question requires some more of problem solving skills. More knowl-
edgeable students should be able to do reasonably well on the Part c) of each
question as well. There are no required questions. Solve as many parts of as
many questions as you can.

Programming Language:

The parts of the questions that require programming can be answered using
any programming language you wish (for example, VB, C/C++, Java, or
Perl). You can also use pseudo-code. Be sure to provide an adequate amount
of detail so the markers can determine if your solution is correct. Pseudo-
code should be detailed enough to allow for a near direct translation
into an appropriate programming language.

Our primary interest is in your higher order thinking skills rather than on
your code wizardry. So a demonstration of logical thinking and systematic
problem solving approaches will count for more than a mastery of syntax of
one particular language. Still, you will have to use some type of programming
language or pseudo-code to demonstrate what you can do. Minor syntactical
errors will be ignored. Add comments where needed to clarify your code.

Suggestions:

1. Read the problem descriptions carefully. To get full marks all problem
specifications for the parts of the questions you attempt have to be
met. You can assume that only valid input will be entered by the user.
You do not need to include out-of-range or data type error checks in
the input to your programs.

2. Where feasible, sample executions of the desired program have been
included for each problem. Review them carefully to make sure you
haven’t missed any specifications and to get hints as to how to proceed.

3. We strongly recommend that you do some design work prior to writing
any code. Use pseudo-code, diagrams, screen displays, tables or any
other aid to help you plan your code. We will be looking at your rough
work and you can get marks for it. Remember we are looking for the
key computing ideas, not specific coding details. In particular you can

Answers - Iverson Exam 2010 3

invent your own “built-in” functions for subtasks such as reading the
next number, or the next character in a string, or loading an array.
Just make sure you specify those functions by giving the relationship
between inputs and outputs. Use pre- and post-conditions if you know
what these are.

4. Take a look at all of the questions before deciding which ones to at-
tempt, and in which order. Start with the easiest parts of each question.
It is OK to do the questions out of the presented order.

5. Make sure to include English language comments to explain non-obvious
or “clever” parts of your solution.

4 Answers - Iverson Exam 2010

Question 1: Recognizing String Literals

In almost all programming languages, a sequence of characters enclosed in
double quotes, such as "Hello World!" in C, is called a character string or
string literal.

Your job in this question is to develop a finite state machine that reads
input text one character at a time and recognizes whether string literals in
the input text are properly formed.

String literals are allowed to contain the double quote character. However,
to avoid ambiguity, a double quote character within a string has to be pre-
ceded by a backslash (\) character. For example, a string literal containing
the following characters

Pat said: "let’s play!" in a loud voice

has to be written as

"Pat said: \"let’s play!\" in a loud voice"

Note how the whole string is enclosed in double quotes, but the double
quotes inside the string are preceded by a backslash. Usually, some other
characters in strings can also be preceded by a backslash to mean something
special, but while allowing this to happen we will not be concerned with this
issue here.

A backslash cannot appear in a valid input text outside of a string literal.

In order to answer Part b) and Part c) of this question, you will need some

Basic terminology for finite state machines

A finite-state machine (FSM) is a kind of computation device. Although
you don’t usually encounter them directly, finite-state machines exist inside
almost any device that does something interesting albeit quite mechanical:
kitchen appliances, remote control toys, simple phones (the complex ones
have full computers), and so on.

There are three primitive concepts associated with an FSM, each associ-
ated with part of an FSM diagram.

State is written as a circle that indicates the settings of the parts of the
machine. Typically the state has a label that tells what it means for
the FSM to be in the state.

Transition is written as an arrow and indicates a potential change from one
state to another or possibly the same state. The transition is labeled
with the events that cause the transition to occur.

Answers - Iverson Exam 2010 5

Event is a cause of a transition. For example, pushing a button, or reading
a character from the input, or the ticking of a clock are events.

An FSM does a computation by starting in a specific start state (marked
with a *), and then waiting for events to occur. Each event causes the
machine to change state by following the transitions that match the event.
The computation stops when there are no more events; or an event occurs
that does not have a matching transition. In the latter case, we say that the
FSM gets stuck.

A state of an FSM is called accepting or final, written as a double circle in
the diagram, if the state corresponds to some desired property of the input
text read so far.

A good physical intuition for these notions is: a state is a possible location
that you can be at on a map. When you are at one location a transition is
a road that can take you to another location. An event causes you to choose
a particular road to travel. A computation is a road-trip, or path, between
a start location and an end location.

When you trace an FSM computation, think of putting a marker (like a
pebble) on the current state, and when an event occurs, moving the marker
to the next state along the transition that matches the incoming event.

Example Here is an FSM that reads characters from input and depending
whether it reads a 0 or reads a 1 it switches between states.

* Even Odd

0 0

1

1

This FSM starts in state Even (the * means start in this state). Every
time a 1 is read, the FSM makes a transition to the other state. But every
time a 0 is read the FSM makes a transition back to the same state. Thus,
the name of the current state tells you whether the number of 1’s that have
arrived so far is odd (state Odd) or even (state Even). None of the states is
marked as the accepting state.

The following machine is similar and accepts inputs with odd numbers of
1’s. Note the accepting state Odd.

* Even Odd

0 0

1

1

6 Answers - Iverson Exam 2010

Question 1 Part a)

As stated above, the following sequence of characters

Pat said: "let’s play!" in a loud voice

is made the contents of a string literal as follows.

"Pat said: \"let’s play!\" in a loud voice"

Write down string literals containing the following sequences of characters.

1. Ted yelled: "got you!!!" and ran away

Answer: "Ted yelled: \"got you!!!\" and ran away"

2. "Use quotes? Why???"

Answer: "\"Use quotes? Why???\""

3. but:" Quotes within "quotes?" ridiculous!" she said.

Answer: "but:\" Quotes within \"quotes?\" ridiculous!\" she said."

4. """"""

Answer: "\"\"\"\"\"\""

Marking: deduct 1 mark for each error but give 1 mark if there is some
other reason.

Answers - Iverson Exam 2010 7

Question 1 Part b)

Define a finite state machine (FSM) for accepting valid input texts in which
string literals are properly formed. Your FSM should read one character at
a time from left to right. For simplicity, assume that only a, b and " will
appear as input characters. Note: for this part assume that no other
characters can appear in a valid input text.

The FSM should check whether each input text is properly built with
respect to double quotes at both ends of a string. The FSM should reach an
accepting state for such texts and only for such texts.

Empty input text is valid.

Examples:

1. a"aba"b is a valid input text.

2. a"b is not a valid input text. The quote starts a string which is not
closed.

3. "ab"aaa"bb"ab"a""" is valid. A string can be empty and in such case
the closing quote directly follows the opening one.

4. a"b"a""a"a is not valid. The last string is not closed.

Answer

a,b a,b

"

"*

Marking: Essentially no partial marks but use your own judgement. It is
OK to have extra states for invalid input.

8 Answers - Iverson Exam 2010

Question 1 Part c)

Define a finite state machine (FSM) for accepting valid input texts in which
string literals are properly formed. Your FSM should read one character at
a time from left to right. Assume that only the following four characters

a b \ "

occur in valid input texts. An input text containing any other character is
invalid.

The FSM should check whether each input text is properly built with
respect to double quotes at both ends of a string. Your FSM must account
for double quotes within a string which are preceded by \. Those escaped
double quotes characters, i.e. \", do not need to be balanced. The character
\ is only allowed within a string and its occurrence outside of a string renders
the input text invalid.

The FSM should reach an accepting state for such texts and only for such
texts which satisfy the conditions described above.

Empty input text is valid.
The examples below should clarify remaining doubt.

Examples:

1. All valid input texts from part b) are still valid.

2. "a\"b" is a valid input text. (The single quote in the middle is pre-
ceded by backslash.)

3. "ab"aaa\"bb"ab" is not valid (the \" is not within a string).

4. a"b\"a\""a"a" is valid.

5. "\"\"""\"""\"\"" is valid.

Answers - Iverson Exam 2010 9

Space for answering Question 1 Part c.

Answer

\

*

"

"

a,b a,b

a,b," \

Note that the FSM does not treat \ as a special character if it is not
followed by ". The FSM also does not consume the entire input if the input
is invalid.

Marking: Essentially no partial marks but use your own judgement. It is
OK to have extra states for invalid input. Deduct 1 mark for wrong treatment
of \\ in a string.

10 Answers - Iverson Exam 2010

Question 2: The Trip

A number of students are members of a club that travels annually to exotic
locations. Their destinations in the past have included Indianapolis, Phoenix,
Nashville, Philadelphia, San Jose, Atlanta, and more recently to Stockholm
and Harbin. The next spring they are planning a trip to Cairo.

The group agrees in advance to share expenses equally, but it is not prac-
tical to have them share every expense as it occurs. So individuals in the
group pay for particular things, like meals, hotels, taxi rides, plane tickets,
etc. After the trip, each student’s expenses are tallied and money is ex-
changed so that the net cost to each is the same, to within one cent. In the
past, this money exchange has been tedious and time consuming. Your job
is to compute, from a list of expenses, the minimum amount of money that
must change hands in order to equalize (within a cent) all the students’ costs.

Input

Standard input will contain the information for several trips. The infor-
mation for each trip consists of a line containing a positive integer, n, the
number of students on the trip, followed by n lines of input, each containing
the amount, in dollars and cents, spent by a student. There are no more
than 1000 students and no student spent more than $10,000.00. A single line
containing 0 follows the information for the last trip.

Output

For each trip, output a line containing one number stating the minimum total
amount of money, in dollars and cents, that must be exchanged to equalize
the students’ costs.

Sample Input and Output

Sample Input

3

10.00

20.00

30.00

4

15.00

15.01

3.00

3.01

0

Output for Sample Input

$10.00

$11.99

Answers - Iverson Exam 2010 11

Question 2 Part a)

Solve this problem by hand for the following input and write down the ex-
pected output.

3

5.00

10.00

30.00

4

140.13

9.01

31.96

76.67

0

Answer

$15.00

$87.91

Marking: 1 mark for each correct answer. (An output off even by $0.01 is
wrong).

In the first case, the sum of all expenditures is $45.00 and the average is
$15.00. $15.00 are transferred by the third student: $10.00 are given to the
first student and $5.00 to the second.

In the second case, the sum is $257.77 and the average is $64.4425 which
means that some students will end up with $64.44 and some with $64.45. The
transferred money comes from the first student ($140.13 - $64.45 = $75.68)
and from the last student ($76.67 - $64.45 = $12.22); total $87.91.

12 Answers - Iverson Exam 2010

Question 2 Part b)

Write a program that solves this problem for the case where there are exactly
two students, n = 2.

Answer

See Part c for the general solution.
When there are only two students the problem is substantially simplified

and can be solved in the following steps.

1. Compute the sum S = s1 + s2 of student expenditures.

2. Compute the average a = S/2 using integer division.

3. If a > s1 then a − s1 must be transferred, else if a > s2 then a − s2

must be transferred, else no transfer of money is needed.

Marking: deduct marks for using real numbers or if they compute some
average of some differences.

Answers - Iverson Exam 2010 13

Question 2 Part c)

Write a program for this problem for any number n of students, 0 ≤ n ≤ 1000.
The following program is in written in C and we hope that you can follow

the program without additional explanations.

#include <stdio.h>

int main () {

int n, A[1010];

int sum, ave, i, d1, d2;

int sabove, sbelow;

while (1) {

scanf ("%d", &n);

if (!n) break;

sum = 0;

for (i = 0; i < n; i++) {

scanf ("%d.%d", &d1, &d2);

A[i] = d1*100+d2;

sum += A[i];

}

ave = sum / n;

sabove = sbelow = 0;

for (i = 0; i < n; i++) {

if (A[i] > ave+1) sabove += A[i] - (ave+1);

if (A[i] < ave) sbelow += ave - A[i];

}

printf("$%.2f\n", ((sabove > sbelow) ? sabove : sbelow)/100.0);

}

}

Marking: The program must compute the average in a loop (1 mark). If
only the sum of above average or only the sum of below average is given as
an answer then add 2 marks.

(It is unlikely that any student got it entirely right.)

14 Answers - Iverson Exam 2010

Question 3: Dick and Jane

Dick is 12 years old. When we say this, we mean that it is at least twelve
and not yet thirteen years since Dick was born.

Dick and Jane have three pets: Spot the dog, Puff the Cat, and Yertle
the Turtle. Spot was s years old when Puff was born; Puff was p years old
when Yertle was born; Spot was y years old when Yertle was born. The sum
of Spot’s age, Puff’s age, and Yertle’s age equals the sum of Dick’s age and
Jane’s age (j). How old are Spot, Puff, and Yertle?

Each input line contains four non-negative integers: s, p, y, j. For each
input line, print a line containing three integers: Spot’s age, Puff’s age, and
Yertle’s age. Ages are given in years, as described in the first paragraph.

Sample Input and Output

Sample Input

5 5 10 9

5 5 10 10

5 5 11 10

Output for Sample Input

12 7 2

13 7 2

13 7 2

Question 3 Part a)

Explain how the first sample solution was computed.

Answer

The sum of the ages of all three pets is 21 (12 + 9).
A rather naive explanation consists of just trying possible age of Yertle in

years as, in this case, Yertle is the youngest of the three pets.
If Yertle is 0 years old at the current moment, then Spot is no more than

11 years old and Puff is no more than 6 years old. This cannot be as the sum
of pet’s ages is then 17.

If Yertle is 1 year old, then Spot is no more than 12 years old and Puff
is no more than 7 years old. The sume of pet’s ages is then 20 which is not
enough.

If Yertle is 2 years old, then it is easy to see that Spot can be 12 years
old, Puff can be 7 years old, which makes the total sum of pet’s ages 21 as
desired.

This approach would lead to some complications when applied to the 2nd
and 3rd sample inputs. For proper solution, see Part b and Part c.

Marking: 2 marks if they get something like written above, even if details
are missing.

Answers - Iverson Exam 2010 15

Question 3 Part b)

Compute the missing entries in the following table.

s p y j Spot’s age Puff’s age Yertle’s age

4 4 8 3 9 5 1

4 4 9 13 13 8 4

4 5 10 3 10 5 0

4 6 10 10 12 8 2

5 4 10 10 13 7 2

6 4 10 5 11 5 1

Marking: deduct 1 mark for each error but give 1 mark if at least 3 are OK.

16 Answers - Iverson Exam 2010

Question 3 Part c)

Write a program that solves this problem. There is a solution which is very
short, yet getting a correct solution (not even the short one) requires some
careful thought.

Answer

In our solution we will use quotient (/ or div) and remainder (% or mod) of
integer division. Given positive integers a and r, we have a = (a/r) ∗ r + a%r
with 0 ≤ a%r < r.

The following property of integer division is crucial for the solution of our
problem: Given positive integers a, b and r, we have

(a + b)/r = ((a/r) ∗ r + a%r + (b/r) ∗ r + b%r)/r

= a/r + b/r + (a%r + b%r)/r

where (a%r + b%r)/r < 2 since 0 ≤ a%r < r and 0 ≤ b%r < r. In other words,
(a%r + b%r)/r is either 0 or 1.

Let s, p, y, j be as in the problem statement. Let Spot, Puff and Yertle be
the sought for answers.

For the explanation of the solution let S, P, Y, J be time intervals measured
in days that correspond to s, p, y, j which are measured in years. Let the
length of the year be r days; the actual value of r is irrelevant.

Let T be the number of days that passed since Yertle was born. We have
Spot = (Y + T)/r, Puff = (P + T)/r, and Yertle = t = T/r. We have

12 + j = (Y + T)/r + (P + T)/r + T/r

y + t + u + p + t + v + t

y + p + u + v + 3t

where both u and v are integers, each either 0 or 1. If we set d = (12 + j −
y − p), then u + v = d%3 and t = d/3.

• If u = v = 0, then Spot = y + t, Puff = p + t and Yertle = t.

• If u = v = 1, then Spot = y + t + 1, Puff = p + t + 1 and Yertle = t.

• If u + v = 1, then we have to sort out whether u = 1 or v = 1. Note
that we have S +P = Y and therefore either s+p = y or s+p+1 = y.
If s + p = y, then P%r ≤ (S + P)%r and therefore u = 1, otherwise
v = 1.

Marking: Must have a loop (1 point). If the answer does not take into
account the adjustments for extra years then 2 points maximum.

(I do not think anybody got it right.)

Answers - Iverson Exam 2010 17

The complete program in C is as follows.

#include <stdio.h>

int main(){

unsigned s,p,y,j, Spot, Puff, Yertle;

int d;

while(scanf("%d %d %d %d", &s,&p,&y,&j)==4)

{

d = (12+j) - (y+p);

Spot = y + d/3;

Puff = p + d/3;

Yertle = d/3;

switch (d%3) {

case 0:

break;

case 1:

if(s+p == y)

Spot++;

else

Puff++;

break;

case 2:

Spot++; Puff++;

break;

};

printf("%d %d %d\n", Spot, Puff, Yertle);

};

};

18 Answers - Iverson Exam 2010

Question 4: Polylops

Given the vertices of a non-degenerate polygon (no 180-degree angles, zero-
length sides, or self-intersection - but not necessarily convex), you must de-
termine how many distinct lines of symmetry exist for that polygon. A line
of symmetry is one on which the polygon, when reflected on that line, maps
to itself.

Input

Input consists of a description of several polygons.
Each polygon description consists of two lines. The first contains the inte-

ger n, with 3 ≤ n ≤ 1000, which gives the number of vertices on the polygon.
The second contains n pairs of numbers (an x- and a y-value), describing the
subsequent vertices of the polygon in some order. All coordinates are integers
from -1000 to 1000.

Input terminates on a polygon with 0 vertices.

Output

For every polygon described, print out a line saying

Polygon #x has y symmetry line(s).

where x is the number of the polygon (starting numbering from 1), and y is
the number of distinct symmetry lines on that polygon.

Sample Input and Output

Sample Input

4

-1 0 0 -1 1 0 0 2

3

-666 -42 57 -84 19 282

3

-241 -50 307 43 -334 498

0

Output for Sample Input

Polygon #1 has 1 symmetry line(s).

Polygon #2 has 0 symmetry line(s).

Polygon #3 has 1 symmetry line(s).

Answers - Iverson Exam 2010 19

Question 4 Part a)

Give examples of polygons with 2 and 4 lines of symmetry. List the coordi-
nates of the vertices of the polygons as above.

(We have good reasons for not asking for 3 lines of symmetry :-).

Answer

An example of a polygon with two lines of symmetry is a rectangle wchich is
not a square.

An example of a polygon with four lines of symmetry is a square.
(An equilateral triangle has three lines of symmetry. Unfortunately, we

cannot have an equilateral triangle whose vertices are at integer coordinates.)

Marking: 1 mark for each correct answer.

Question 4 Part b)

Solve the following programming problem. Given a polygon p as above and
a line L, determine whether L is a symmetry line for p. Let L be given by
the coordinates ax, ay, bx, by of two (different) points a and b on L.

Answer

Please have a look at the solution for Part c which includes some guiding
comments.

Thanks to Alfred Ye from Strathcona for suggesting a simple way of check-
ing that two points are a reflection of each other wrt to a given line. His
suggestion is used in the solution to Part c. (My original solution included
perpendicularity checking with dot product.)

Marking: Marks for checking that every point has a corresponding reflection
point in order of the the given points. Use your own judgment and give marks
even if the solution is technically wrong but there is some thought in it.

Question 4 Part c)

Solve the original programming problem above.
Roughly, what is the running time of your algorithm for a polygon with n

vertices in terms of n? (Rough estimate of running time is fine.)

Marking: Use your judgement and give marks if there is any reason for.
(If you see a correct solution please let me know asap: I have seen one.)

20 Answers - Iverson Exam 2010

The complete solution in C.

#include <stdio.h>

typedef struct {

int x, y;

} Point;

Point p[3000];

int distance(Point p1, Point p2) { // square of dist

return (p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y);

}

main() {

int i, j, z, n, prob=1;

for(;;) {

scanf(" %d", &n);

if(!n) break;

// double the number of points to include midpoints

n *= 2;

for(i = 0; i < n; i += 2) { // the vertices located at even i’s

scanf(" %d %d", &p[i].x, &p[i].y);

p[i].x *= 4; p[i].y *= 4; // midpoints’ coordinates are also integers

}

for(i = 1; i < n; i += 2) { // midpoints of the sides at odd i’s

p[i].x = (p[i-1].x+p[(i+1)%n].x)/2;

p[i].y = (p[i-1].y+p[(i+1)%n].y)/2;

}

z = 0; // counter for lines of symmetry

for(i = 0; i < n; i++) {

// Try that p[i] and p[(i+n/2)%n] are on a line of symmetry.

// p[(i+j)%n] and p[(i+n-j)%n] must be reflections wrt to the line.

for(j = 1; j < n/2; j++) {

if (! (distance(p[i], p[(i+j)%n]) == distance(p[i], p[(i+n-j)%n]) &&

distance(p[(i+n/2)%n], p[(i+j)%n])

== distance(p[(i+n/2)%n], p[(i+n-j)%n])))

break;

}

if(j < n/2) continue; // did not manage to check all

z++; // Every line will be counted twice

}

printf("Polygon #%d has %d symmetry line(s).\n", prob++, z/2);

}

}

(It doesn’t look good but it fits into the page.)
The running time of the algorithm is proportional to n2 because of the two

nested loops when trying all possible lines of symmetry.

Answers - Iverson Exam 2010 21

Extra space

