
c© Joseph Culberson Janelle Harms Herb Yang

June 22, 2011

Contents

Preface ix
About . ix
Target Audience . ix
Motivation . ix
Why BB and PET? . x
Study Hints . xi

1 Introductory Concepts Using BeeperBot 1
1.1 What is BeeperBot? . 1
1.2 Obtaining BeeperBot (BB) 2
1.3 Getting Started with BB . 2
1.4 A brief overview of BB’s menus 6
1.5 Programming BeeperBot . 9

1.5.1 Coding an Initial World 9
1.5.2 Programming Language 11

1.6 Coding Concepts and Terminology 12
1.7 Tracing Execution . 15
1.8 Two Sample BeeperBot Programs 22
1.9 Example Program Development 25
1.10 BeeperBot and the Concept of State 32

1.10.1 Illustrating the difference between if and while 37
1.10.2 Subroutines, Abstraction and State Diagrams 37

1.11 Sample BeeperBot Questions 40
1.11.1 Tracing Questions . 40
1.11.2 BeeperBot Programming Questions 42
1.11.3 * Advanced Questions 43

1.12 BeeperBot History . 49

i

ii CONTENTS

2 Representation: Adding Meaning 51
2.1 Characters and Strings . 52
2.2 Counting and Number Systems 55

2.2.1 Unary Arithmetic . 55
2.3 Base Ten Arithmetic . 59

2.3.1 Counting in Base Ten 63
2.3.2 Conversion of Unary to Base Ten 63
2.3.3 Addition Base Ten . 65
2.3.4 Programming BeeperBot to Work in Base Ten 66

2.4 Base Two or Binary Arithmetic 68
2.4.1 Counting in Binary . 68
2.4.2 Representation and Conversion from Base Ten to Binary 70
2.4.3 Conversion of Binary to Base Ten 71
2.4.4 Addition in Binary . 71
2.4.5 Multiplication in Binary 72

2.5 Binary Number System Variations 73
2.5.1 Fractions in Binary . 73
2.5.2 Finite Binary Representations and Powers of 2 76
2.5.3 Two’s Complement . 78

2.6 Binary Representation of Characters 82
2.7 Questions on Representation 82

2.7.1 BABA and Text Questions 82
2.7.2 Counting Questions 84
2.7.3 Arithmetic Questions 84

3 Logic and Circuits 87
3.1 Boolean Logic . 87

3.1.1 Elementary Boolean Functions 89
3.1.2 Universality of NOT, OR and AND. 92
3.1.3 How Many Boolean Functions are There? 93

3.2 Elementary Boolean Circuits 94
3.3 General Boolean Functions and Circuits 96

3.3.1 Multi-input AND and OR Gates 97
3.3.2 The Sum of Products Construction 98

3.4 Binary Addition using Logic and Circuits 100
3.5 Chapter 3 Questions . 104

CONTENTS iii

4 Program Exploration Tool (PET) 107
4.1 Architecture . 108

4.1.1 The von Neumann architecture 109
4.2 Simplified Model Underlying PET 110
4.3 PET Language . 115

4.3.1 Interface . 115
4.3.2 Comments . 115
4.3.3 Variables . 115
4.3.4 Expressions and Assignment 119
4.3.5 Control Statements and Subroutines 123
4.3.6 Input and Output . 124
4.3.7 Controlling and Monitoring Code Execution 126
4.3.8 Saving and Loading Source Code 127

4.4 PET Questions . 127

5 Algorithms and PET 133
5.1 What is an algorithm? . 133

5.1.1 Working definition of Algorithm for CMPUT 101 . . . 135
5.1.2 Some Examples of Non-Algorithms 136
5.1.3 Some Elementary Algorithms 138

5.2 Conversion Algorithms . 140
5.2.1 Base Ten to Binary . 141
5.2.2 Binary to Base Ten . 143

5.3 Searching Algorithms . 144
5.3.1 Guess a Number Game 144
5.3.2 Guess a Number Host 145
5.3.3 Illustration of the Binary Search Decision Tree 150
5.3.4 Player for Guess a Number: Binary Search 153

5.4 Algorithm Questions . 154
5.4.1 From section 5.1 . 154
5.4.2 From section 5.2 . 155
5.4.3 From section 5.3 . 156

6 Introductory Searching and Sorting 159
6.1 Sequential Traversal of an Array 159

6.1.1 Addition and Other Functions on an Array 160
6.1.2 Searching for an Element 162
6.1.3 Finding the Maximum in an Array 163

iv CONTENTS

6.1.4 Run Time Stats: Find Max 164
6.1.5 Why not use binary search? 166

6.2 Elementary Sorting Algorithms 167
6.2.1 Swap . 167
6.2.2 Selection Sort . 168
6.2.3 Run time analysis of selection sort 171
6.2.4 Insertion Sort . 173
6.2.5 Run time analysis of insertion sort 176

6.3 Binary Search of a Sorted Array 177
6.3.1 Binary Search analysis 179

6.4 Exercises on Searching and Sorting 180

7 More Algorithm Design 185
7.1 MergeSort . 185

7.1.1 Finding and copying the runs 186
7.1.2 Merging two sorted arrays 188
7.1.3 Putting it together: Natural MergeSort 190
7.1.4 How fast is mergesort? 193
7.1.5 Merge Sort Questions 195

List of Tables

3.1 All two input Boolean functions and some common names.
Note that in the name table the functions on the right are the
negations of the functions in the same row on the left. 91

3.2 The Number of Boolean Functions on n Inputs 94
3.3 Addition Functions for Sum (s) and Carry 103

v

vi

List of Figures

1.1 On initial start up, BeeperBot will look like this, without
the colorful labels of course. Your display may differ slightly
depending on the system you are using and the options you
are using. 3

1.2 How the world file works: The robot command indicates the
initial location of the robot, the two numbers indicating the
column and row, the N indicating it should be facing north.
The six wall commands place walls on the north side of row
six, one in each column from 1 to 6. The other option is to
place the walls on the east side of a cell using ‘E’. The beepers
command can place any number of beepers on any cell in the
initial world. 10

1.3 State diagram containing a while loop 34
1.4 State diagram on an if statement. 36
1.5 BeeperBot State Example Two 39

2.1 BABA . 54
2.2 Pseudo-code Description of the BABA Program 54
2.3 Unary Addition . 57
2.4 Unary Subtraction . 58
2.5 Subtraction Code . 60
2.6 Unary Multiplication Code 61
2.7 Binary Numbers on 4 Bits . 77
2.8 Two’s Complement on 4 Bits 79

3.1 Boolean Gates . 94
3.2 Gate Construction of P AND NOT(P). 95

vii

viii LIST OF FIGURES

3.3 Gate Construction of XOR 96
3.4 Three Input AND. 97
3.5 Circuit to compute F andG, constructed using the sum of

products method. Connection of the inputs to Fb, Fc and Fd

gates is left as an exercise. 101
3.6 Ripple Adder for Two 3-bit Numbers. 104
3.7 The Full Binary Adder: Complete as Exercise. 106

4.1 von Neumann Architecture 109
4.2 Random Access Memory (RAM) model 111
4.3 PET Interface . 116

5.1 The first two levels of a Twenty Questions Decision Tree . . . 137
5.2 Partial Binary Search Decision Tree for N = 10. 151

6.1 Swapping elements A[i] and A[j], where i = 1 and j = 4. . . . 168
6.2 Unsorted (left) and sorted (right, colored) parts of an array

during selection sort. 169
6.3 Insertion Sort with the sorted part highlighted on the left. . . 174

7.1 An A with runs indicated. 186
7.2 Two runs are copied, and then merged back into A. 188
7.3 One step of a merge into A. 189
7.4 A after the merger of the first two runs. 191
7.5 A trace of mergesort showing the result after each pass. . . . 191

Preface

About this text

A PDF version of these notes, the BeeperBot program, the Program Explo-
ration Tool, and various sample input programs for these can be found at
the following web site.

CMPUT 101 Source Site
http://www.cs.ualberta.ca/resources-services/teaching-resources

If you are viewing this on line, highlighted terms are typically web links.
Other highlighted items link to internal references, such as chapters 1, sec-
tions or figures 1.1. Depending on the software used to view this document,
and on the dynamic nature of the web itself, these may or may not work.

These notes are an ongoing accumulation based on the CMPUT 101
course as it has evolved over the years. Please report typos and errors to
mailto:joe@cs.ualberta.ca

Target Audience

This course is primarily targeted at students who are in disciplines other than
Computing Science. No background or experience in computing is assumed.
Although there is some low level programming using very simple languages,
it is not intended to be a programming course, but rather a presentation of
elementary computing science concepts.

Motivation

An underlying goal for this course is to present an introduction to comput-
ing science for non-CS students in a fashion analogous to an introductory

ix

http://www.cs.ualberta.ca/resources-services/teaching-resources
mailto:joe@cs.ualberta.ca

x Preface

physics course given to high school students. In an introductory high school
physics course, as we recall them from many years ago, we might expect to
see classical physics concepts such as force and mass and the relationships of
acceleration, energy and work, for example. Elementary mechanical abstrac-
tions such as levers, pulleys and inclined planes, would be used to introduce
these concepts. These latter entities might also be considered as elementary
engineering abstractions, upon which all mechanical devices are built, but
at the same time they are suitable for identifying and explaining some of the
more abstract concepts in a tangible way.

Although modern physics might be more concerned with quantum me-
chanics and the Schrödinger equation, we would not expect a first level course
to start there. Perhaps we overstate the case, or overdraw the analogy, but
similarly we do not want to start from high level abstractions of computation
and the latest software design techniques, but instead we want to identify
the fundamental concepts and how they build up into more complex con-
structs through abstraction and composition, and the general principles of
computation science. Although we will require some elementary abstractions
of devices such as gates and circuits, we do not want to focus on the many
engineering marvels of modern computers any more than an introductory
physics course would focus on the engineering niceties of the latest Ferrari.
Nor do we want to discuss the intricacies of managing a large software de-
velopment project any more than an introductory chemistry course would
discuss issues of managing a large chemical refinery.

In short, we want to identify, probe and discuss the analogs of wheels
and pulleys, inclined planes, levers, forces and masses as we see them in
computing science.

Also, note that this course is not a computer literacy course. We will
not cover the use of a computer as a tool. For example, we will not discuss
MS Word, PowerPoint or similar end user programs. In our view, using
these tools as an introduction to computing science is akin to using driver
education as an introduction to physics.

Why BB and PET?

Why do we use BeeperBot(BB) and Program Exploration Tool(PET) in-
stead of teaching a language like Java? The goal of this course is to provide
insight into the concepts underlying computation, not to make programmers

Preface xi

out of you. BB can be used to present many of the fundamental concepts
of computing without the complexity of a full blown modern programming
language. PET is a simple programming language with structure similar
to the language C, and the advantage of a visual emulator that facilitates
understanding of how the language works in terms of the underlying com-
putational model.

Most modern programming languages are very complex. They are de-
signed for production level work and cannot be fully grasped in a single term,
especially by anyone not even familiar with elementary concepts. Here is a
quote found on the internet

To make matters worse, there are more syntax rules in Java than
there are in English, and the error messages you get from the
compiler are often not very helpful.
OOPWeb.com Chapter 1: The way of the program1.

Syntax rules govern the formation of statements in a programming lan-
guage. BB and PET have far fewer syntax rules, and are much easier to learn.
The PET tool used later allows a more flexible development of algorithmic
concepts, many of which carry directly over to complete programming lan-
guages. As an analogy, in an introductory cooking course you would expect
to focus more on the fundamentals of ingredients and techniques than on the
mechanics of the latest multipurpose cooking range. Believing that learning
a more complex programming language will make you cognizant of comput-
ing science is akin to believing that learning to run a more complex electric
range will make you a great chef.

Nevertheless, much of what you learn here will carry over to modern
programming.

Study Hints for this Course

Since this course is largely targeted at non-science and non-mathematics
students, a word on how to use these notes may be in order. This material
is best approached by “doing”, not memorization. Intense study means
working lots of exercises, not reviewing masses of reading material.

A good analogy is to consider a sport such as hockey. No matter how
many books you may read, nor how many lectures you may attend, unless

1http://www.oopweb.com/Java/Documents/ThinkCSJav/Volume/chap01.htm

http://www.oopweb.com/Java/Documents/ThinkCSJav/Volume/chap01.htm

xii Preface

you put on skates, and grab a stick and practice, you will never learn to play
hockey.

When reading sections of these notes about BeeperBot or PET, you
should have a computer handy with the tool readily at hand to try each idea
as it is presented.

Chapter 1

Introductory Concepts Using
BeeperBot

In this chapter we introduce some fundamental concepts of computing sci-
ence, using the program BeeperBot. Once you obtain BeeperBot, it would
be a good idea to have it running while reading the rest of the chapter, so
that you can check out the features such as the extensive Help menu. Also,
use BeeperBot to check out the examples, and to try variations as you read.

1.1 What is BeeperBot?

BeeperBot, or BB for short, is a programming environment to control a
primitive graphical robot that exists in a two dimensional grid world. We
often refer to the robot as BB itself. The robot can only interact with walls
and beepers. For walls, BB can only detect them, and if she tries to move
through a wall, an error occurs.

BB can create, destroy, collect and distribute beepers. She has no built-
in way to count, and so BB can only distinguish between having one or more
beepers, or none.

Nevertheless, BB can carry out powerful computations, given enough
time. Many elementary but fundamental concepts of computing science can
be illustrated easily with BB. And that is of course the goal of this software.

1

2 1.2. OBTAINING BEEPERBOT (BB)

1.2 Obtaining BeeperBot (BB)

Before proceeding further, you need to obtain the program BeeperBot from
the website, if you have not already done so. (We assume you have access to
a computer for this course. If you do not, then the following exercises will
have to be carried out in one of the computing science labs. We suggest you
be prepared to spend quite a bit of time in the labs in this case.)

1. Download the file beeper.jar from this site.

http://www.cs.ualberta.ca/resources-services/teaching-resources

2. Put the file beeper.jar in the folder where you keep applications.

To uninstall BeeperBot, simply remove the file beeperbot.jar. In ad-
dition, if you have changed your settings, in your home directory there may
be a file .gvrsettings which you may also remove.

1.3 Getting Started with BB

On a MAC or PC you should be able to start BB by clicking or double
clicking the file beeper.jar.

On Unix or Linux enter the command

java -jar /Applications/beeperbot.jar

where of course you must replace Applications with the path to the location
of beeperbot.jar on your system. You can also start it this way in a
terminal in MAC OS X if you prefer that to clicking.

On MAC OS X you can also drag beeperbot.jar to the dock (at the
document end) and start it from there.

After starting BB, you should have a window that looks like Figure 1.1.
The graphics may vary slightly depending on the system you are using. This
may also differ a bit if you have used BB before and saved a different set of
preferences. The following assumes this is the first time you have run BB,
and that BB is using the default settings.

The window consists of five panes which we now examine. You have BB
running so you can follow along.

http://www.cs.ualberta.ca/resources-services/teaching-resources

CHAPTER 1. INTRODUCTORY CONCEPTS USING BEEPERBOT 3

MENUS

Program
Source
Code

Control
Buttons

BeeperBot's World Initial World
Description

Source Code

Current
Program
Values

Subroutine
Call Stack

Pane
Resize

Window
Resize

Figure 1.1: On initial start up, BeeperBot will look like this, without the
colorful labels of course. Your display may differ slightly depending on the
system you are using and the options you are using.

4 1.3. GETTING STARTED WITH BB

Program Pane: This is found on the left side of the window, and is an ed-
itable text area. When started it contains a default program consisting
of only the lines shown in Figure 1.1.

Try it now: Click in the window and enter the text “ move” at line
2 followed by the line “ pick beeper” at line 3. Your program should
now look like

define main {
move
pick_beeper

}

Initial World Pane: Located on the top right of the window, this is an-
other editable text window. Click on the initial world pane and enter
the lines below exactly as shown (note the capital ‘N’, all other letters
are lower case).

robot 2 3 N
beepers 2 4 1

World Pane: BeeperBot’s World is located in the center top of the win-
dow. At the bottom of this pane there are three buttons that control
execution of the program. There is also a slider knob that changes the
scale of the world display.

• Reset Initializes the world. Try it now. Click the Reset button.
You will see that the world changes to display the location of the
robot, with a blue shape representing the robot, and a green cross
indicating the coordinates. (The green coordinate display can be
turned off in the menu Robot if desired.) After clicking Reset
the Window should look like this.

CHAPTER 1. INTRODUCTORY CONCEPTS USING BEEPERBOT 5

• Step Executes one step of the program each time it is clicked.
Try it now. Note that each time you click, a line of text is
highlighted in the program pane. The highlighted line is the next
step of the program to be executed.
Note that on the first click, the line define main{ is highlighted,
the second click highlights the line “ move”. On the third click
the line “ pick beeper” is highlighted, and at the same time the
robot in the world pane moves one step forward.
If you keep clicking the program will start over again, after first
resetting to the initial world description.

• Run Executes the program. While the program is running this
button turns to Pause, although for this short program it may be
too quick to notice. If the program is paused, then clicking Run
again continues the program from where it was paused. Clicking
Reset at any time stops the program and resets it to the initial
world conditions.

6 1.4. A BRIEF OVERVIEW OF BB’S MENUS

Status Pane: This is located on the right center. It is a display only text
window. It indicates the following:

• Facing The direction the robot is currently facing, with “North”
being “up”.

• Location The column and row BB is currently in.

• Beepers Near The number of beepers in the same location as
BB.

• Moves The total number of move and turn left statements that
have been executed so far in the current run.

• Create How many beepers BB has created so far in the current
run.

• Destroy How many beepers BB has destroyed so far in the cur-
rent run.

• Bag(0). . . Bag(9) In Auxiliary mode BB has 10 bags, labeled 0
through 9. Each bag will be listed on a separate line. The number
on the right indicates the number of beepers currently in the bag.
Note: in primitive mode BB has no bags, and in standard only
one bag. The display will change according to which mode BB is
in.

Call Stack Pane This is a text display window that shows the current
subroutine calls.

Tutorial Exercise

Using the program and world defined above, step through the program one
step at a time, and observe precisely when the robot moves and when it
picks up a beeper putting it into bag(0). After each click of the Step button,
carefully check both the World display, and the information in the Status
pane. Notice in particular that the code line is highlighted before the action
takes place. Also note that some code lines do not change either the world
or status file.

1.4 A brief overview of BB’s menus

As indicated in Figure 1.1 there are 4 menu items in BeeperBot.

CHAPTER 1. INTRODUCTORY CONCEPTS USING BEEPERBOT 7

File For loading, saving and creating new programs, as displayed and edited
in the Program pane. Also contains the item Exit which exits Beeper-
Bot.

World For loading, saving and creating new initial world descriptions, as
displayed and edited in the Initial World pane.

Robot This item has has several functionalities discussed separately below.
Broadly, it has controls for running the program, and sets various
preferences.

Help Links to a built-in manual describing the interface, the program syn-
tax and listing the commands and conditionals available in the different
operating modes.

The manual under the Help menu might be sufficient to learn BeeperBot.
Note however, as with any computer language, there is a huge gap between
learning the language elements and learning to effectively program in that
language.

For the File and World menus, all files are saved as plain text, and
can be viewed using most editors. However, you should not edit program
or world files using editors such as Microsoft Word as these introduce for-
matting text that may cause BeeperBot to fail. Be sure to choose distinct
names for your World and Program files: e.g. exercise 1 world.txt and
exercise 1 program.txt so that they will not overwrite each other.

The Robot Menu

As stated above, the Robot menu has several purposes. Here we list the
various items with a brief description of each.

Run

Step

Reset These have the same functionality as the corresponding buttons in
the World Display pane described above; namely they run the cur-
rent program.

0 - Slow

1 - Medium

8 1.4. A BRIEF OVERVIEW OF BB’S MENUS

2 - Fast

3 - Full Speed These buttons control the speed at which the code executes.
Slow allows the user to follow the execution of most programs, but is
very tedious for longer running pieces of code. Fast is probably too
fast to follow what is happening with both the code and the robot in
real time, but can give a view of what bits of code are being used the
most. Full Speed does not update the display and does not trace
the execution of the code, but instead runs the code until the program
halts, and then displays the result.

Note that execution speed can also be modified by statements in the
source program. This feature is handy for working with some of the
larger programs in the notes.

Highlight coordinates This toggles on or off the green cross bars indi-
cating the row and column where the robot is located in the World
Display pane.

Show beeper dots This toggles whether or not a dot is displayed in the
cells containing one or more beepers. If it is toggled off, then only the
number of beepers is displayed in the cell.

Use large fonts This toggle affects the size of the font used for the text
in the Program, Initial World and Status panes. The actual size
used is set in the pop-up window activated by the Settings item in
the Robot menu. This may be useful when displaying the program in
a classroom setting for example.

Use large beeper dots When toggled on, instead of displaying a dot, this
fills the entire cell with an ugly pinkish color. This is useful when
trying to use BeeperBot to create simple graphic images. This toggle
has no effect if Show beeper dots is turned off.

Settings Pops up a window with the following contents

Calls before... A text window that requires a number. The default is
5000, and this means that for long running programs every 5000
steps an alert window will pop up, asking if you wish to continue
the program. This is useful if for example you are running a
program at Full Speed and it happens to have an infinite loop.
It is expected that most BB programs will not run this long.

CHAPTER 1. INTRODUCTORY CONCEPTS USING BEEPERBOT 9

Operating Mode with radio buttons Primitive Mode, Standard
Mode and Auxiliary Mode. Primarily, these control the num-
ber of beeper bags that BB can use. In primitive mode, BB has
no bags, in standard mode she has 1 bag, and in Auxiliary mode
BB has 10 bags. See the manual under the Help menu for more
information.

Large Font Size Use the scroll to select the font size to use when
Use large fonts is toggled on. This does not affect the default
font size.

Save After making settings, click this button. Note: until you click
this save button, BeeperBot will not remember recently seen files,
nor the toggles that are set in the Robot menu.

1.5 Programming BeeperBot

Before proceeding further do the following.

Start BeeperBot.

If BB does not display 10 bags in the Status pane, then do the following.

1. Under the Robot menu, scroll down and click settings

2. In the pop-up window, click the Auxiliary radio button.

3. Also in the pop-up window, click the save button.

Throughout these notes, unless stated otherwise, we will
assume you are using Auxiliary mode. BeeperBot will re-
member to start in Auxiliary mode on subsequent startups
once you save the settings as described.

1.5.1 Coding an Initial World

Figure 1.2 illustrates how the world file constructs the initial world for
BeeperBot to start in.

Notice that there is already a wall running along the west side of the
world, and another along the bottom edge. There are no comparable walls
on the east or north, unless you specify them. Basically, BB can go as far
east or north as it wishes, until your computer runs out of memory.

10 1.5. PROGRAMMING BEEPERBOT

robot 1 6 N

wall 1 6 N
wall 2 6 N
wall 3 6 N
wall 4 6 N
wall 5 6 N
wall 6 6 N

beepers 7 1 1
beepers 1 2 3

Figure 1.2: How the world file works: The robot command indicates the
initial location of the robot, the two numbers indicating the column and
row, the N indicating it should be facing north. The six wall commands
place walls on the north side of row six, one in each column from 1 to 6. The
other option is to place the walls on the east side of a cell using ‘E’. The
beepers command can place any number of beepers on any cell in the initial
world.

CHAPTER 1. INTRODUCTORY CONCEPTS USING BEEPERBOT 11

To be sure you understand, you should practice making a few arbitrary
worlds using BeeperBot.

Tutorial Exercises

1. What happens if you try to make two (or more) robots, using two
robot command lines?

2. What happens if you use the line

robot 1 6 N 55

to define the robot location? This is a legal way to define the initial
location of the robot, but your task is to find out what the number 55
at the end of the line does.

1.5.2 Programming Language

While reading this part, you should have BeeperBot running with the manual
in the Help menu item Contents. The Help menu item Contents has a
more extensive description of the commands than is found here. This section
focuses as much on using the BeeperBot tool and general programming ideas
as details of the language.

First let us summarize the statements available in BeeperBot.
Here we organize the command list slightly differently. There are two

general types of statements, commands that cause some action to happen
and conditionals which test some condition and evaluate to true or false
depending on whether the condition holds or not.

Robot Control

These statements allow you to program movement of the robot, while avoid-
ing walls.

Movement Commands move and turn left.

Wall Checking Conditionals front is clear, not front is clear,
and similar for left and right

Compass Checking Conditionals facing north, not facing north,
and similar for east, south and west.

12 1.6. CODING CONCEPTS AND TERMINOLOGY

Working with Beepers

These statements allow you manipulate beepers, both in the world and in
the beeper bags. Remember, BB has 10 beeper bags (in auxiliary mode)
each of which can store any number of beepers. A cell in the world may also
hold any number of beepers.

Manipulation Commands create beeper, destroy beeper, pick beeper,
put beeper, move beeper(0,1). . . move beeper(9,0)

Location Check Conditionals next to a beeper, not next to a beeper

Bag Check Conditionals has beeper(0) . . . has beeper(9),
and not has beeper(0) . . . not has beeper(9).
(Note: any beeper in beeper bag and its negation are equivalent to
has beeper(0) and its negation, and are included only for compatibility
reasons.)

Program Control

These statements control the order in which the code is executed during a
process. Note that process refers to the running of the code.

Code Control Statements if, if . . . else, do, while

Subprogram Definition define

Program Speed set speed, restore speed

Comments any line that begins with a # is treated as a comment, and
ignored when the program is running.

We believe that the best way to become familiar with the concepts of
running a program is to try a few examples. Check the BeeperBot Help
menu for what these commands do.

1.6 Coding Concepts and Terminology

Let us consider the following source code to establish some terminology that
will be used throughout this course. The program draws a square when
executed. It will be referred to again later in this chapter.

CHAPTER 1. INTRODUCTORY CONCEPTS USING BEEPERBOT 13

1 # Example Program CMPUT 101 Lec 1&2 Culberson
2
3 define main {
4 do (4) {
5 do (3) {
6 create_beeper
7 move
8 # what happens if the next
9 # turn_right is moved here
10 }
11 turn_right
12 }
13 }
14
15 define turn_right {
16 turn_left
17 turn_left
18 turn_left
19 }

Here is some terminology.

Source Code

The example program above is an example of source code. It is the descrip-
tion of the program, written to follow the rules of the programming language.
Frequently the language requires a text document as in this example. How-
ever, a few languages use a graphical form, such as that used in the language
Scratch1 and some low level languages, or machine languages, are basically
numbers. We will see a little bit of that later in the course.

Syntax and Statements

Many online dictionaries define syntax as the study of the rules used to gov-
ern the construction of grammatical sentences. For a programming language
such as that used by BeeperBot the statements are quite restricted in the
form they take, because the syntax rules are mathematically precise and

1http://scratch.mit.edu/

http://scratch.mit.edu/

14 1.6. CODING CONCEPTS AND TERMINOLOGY

must be followed precisely. The reason for this is that computers are in-
herently non-intutitive, and even the slightest error will cause BB to give
up.

The syntax rules for BB are given in the Contents section of the Help
menu. For BB, each line consists of exactly one statement. Special cases:
Blank lines, comment lines and lines containing only “ } ” do not execute as
statements; that is, they have no effect when the program runs. If you wish,
you can think of them as null statements.

Code Block

In BeeperBot source code, the statements between braces are referred to as a
code block. Thus, lines 5–10 form a code block, and lines 4–12 form another
code block, which contains the first code block as a nested block or sub-block.
In fact lines 3–13 and lines 15–19 are two more blocks.

Process

As stated previously, a process refers to the act of executing the code. For
our purposes you can think of a process as being the actions of the computer
when you hit the Run or Step buttons. Alternatively you can simulate the
process by carefully following the steps laid out in the program by hand.
This hand process we refer to as tracing the execution of the code.

Subroutine or Procedure

The source code in lines 15–19 is a special code block in that it defines a
subroutine or procedure. When the program is executing and reaches line
11, we say that the turn right subroutine is called. Confusingly, we may also
refer to the turn right statement in 11 as a call even when we are talking
about the code when not running.

Loops

These do statements are examples of a general construction called loops,
since a process repeats the statements iteratively the required number of
times. Later we will see how to build conditional loops using a while state-
ment.

CHAPTER 1. INTRODUCTORY CONCEPTS USING BEEPERBOT 15

Abstraction

The turn right routine is an example of abstraction. In computing science,
abstraction generally means that we want to think of the external or over
all effects of a piece of code versus the details of its implementation. In this
regard

• the external property of the routine is to cause the robot to turn 90o

to the right

• the implementation causes the robot to make 3 left turns.

1.7 Tracing Execution

One of the skills a programmer must develop is the ability to hand simulate
a process described by a program. We refer to this as tracing the execution
of a program.

We will trace the execution of the following program. We include state-
ment numbers here as they would appear in BB for easy reference to the
statements.

1 define main {
2 move
3 while (next_to_a_beeper){
4 pick_beeper
5 turn_left
6 }
7 while (has_beeper(0)) {
8 create_beeper
9 move_beeper(0,1)
10 move
11 }
12 }

We assume the following initial world description.

robot 3 3 N
beepers 3 4 2

What do we need to do? We need to track the following:

16 1.7. TRACING EXECUTION

1. What statement we are about to execute next in the source code.

2. Where the robot is located

3. What BB has in her bags

4. What the world looks like.

The first three items on our list we can do in a simple table. The last
item requires some sort of diagram. For this text we will use images copied
from executing BB on this program. But remember, when doing it by hand,
you will need to make a diagram that you can update.

For this first example, we will do a very detailed accounting. As you gain
experience, you will learn to abstract chunks of code and perform aggregate
steps at once. For now, you should run BB as you read this, executing each
step, or sequence of steps, as it is discussed.

Where do we start? First we do a reset. Then let us simulate the program
from the time of the first click of the Step button. Since only bags 0 and
1 are referenced in the code, we only need to track their contents in the
table. The table below indicates the relevant data after this first click. At
this point the line “1 define main {” is highlighted. Note that it has not
executed. In particular note that there are no beepers next to BB, that is
in cell (3,3).
Process Line Robot Beepers Number Contents of

Step Number Location Near of Moves Bag(0) Bag(1)
1 1 (3,3),N 0 0 0 0

At this point BB’s world looks like this

CHAPTER 1. INTRODUCTORY CONCEPTS USING BEEPERBOT 17

If we click once more, we are ready to execute statement 2, the move state-
ment. Nothing else has changed.
Process Line Robot Beepers Number Contents of

Step Number Location Near of Moves Bag(0) Bag(1)
1 1 (3,3),N 0 0 0 0
2 2 (3,3),N 0 0 0 0

On the next click BB moves one step north to location (3,4), and is now
standing next to the 2 beepers. Note that the number of moves has increased
to 1.
Process Line Robot Beepers Number Contents of

Step Number Location Near of Moves Bag(0) Bag(1)
1 1 (3,3),N 0 0 0 0
2 2 (3,3),N 0 0 0 0
3 3 (3,4),N 2 1 0 0

At this point BB’s world looks like this

In the source code, statement 3, “while (next to a beeper){”, is highlighted,
and if you are following this in BB as you should be, you will notice that there
is a green check mark at the end of the source code line. This indicates that
the condition in the while loop currently evaluates to true. In this case this
means there is indeed one or more beepers in the cell where BB is located.

Since the condition is true the next step will start executing the body
of the while loop, the body being the statements inside the code block. After
another two more clicks the trace table should look like this:

18 1.7. TRACING EXECUTION

Process Line Robot Beepers Number Contents of
Step Number Location Near of Moves Bag(0) Bag(1)

1 1 (3,3),N 0 0 0 0
2 2 (3,3),N 0 0 0 0
3 3 (3,4),N 2 1 0 0
4 4 (3,4),N 2 1 0 0
5 5 (3,4),N 1 1 1 0
6 6 (3,4),W 1 2 1 0

We show here the entire BB window so that you can check with the run
you are doing using BB and the table above.

Note that the number of moves has increased to 2. This is because a turn left
is counted as a move by the BB program.

At this point, the next click on the Step button causes the code execution
to move back to statement 3. The while condition needs to be tested again.
Since there is still one beeper next to BB, the body of the while will execute
again. Here is what the trace table should look like after a few more clicks.

CHAPTER 1. INTRODUCTORY CONCEPTS USING BEEPERBOT 19

Process Line Robot Beepers Number Contents of
Step Number Location Near of Moves Bag(0) Bag(1)

1 1 (3,3),N 0 0 0 0
2 2 (3,3),N 0 0 0 0
3 3 (3,4),N 2 1 0 0
4 4 (3,4),N 2 1 0 0
5 5 (3,4),N 1 1 1 0
6 6 (3,4),W 1 2 1 0
7 3 (3,4),W 1 2 1 0
8 4 (3,4),W 1 2 1 0
9 5 (3,4),W 0 2 2 0
10 6 (3,4),S 0 3 2 0

Notice that BB is now facing south, has made a total of three “moves”
and has two beepers in Bag(0). There are no beepers left in the world. These
are the key things you need to know about the process so far.

On the next step the source code process will once more go back to the
statement 3 to check the while condition, but this time there are no beepers
left in the room, so the condition is false. The next step will therefore jump
out of the while and the process will continue at statement 7, the second
while in the program.

Now let us present the remainder of the process at a slightly more ab-
stract level. Note however that you should continue to trace the execution
step by step and verify the table entries below.

Each time around this while loop, BB first creates a beeper in the cell
it is standing in. Then she moves one beeper from Bag(0) to Bag(1).The
purpose of doing this is so that eventually the process will stop looping.
After moving the beeper, BB moves one step forward.

You should be able to see now that BB will create two beepers, one in
cell (3,4) and one in cell (3,3) and stops in location (3,2). We present here
the complete tracing table and the final result.

20 1.7. TRACING EXECUTION

Process Line Robot Beepers Number Contents of
Step Number Location Near of Moves Bag(0) Bag(1)

1 1 (3,3),N 0 0 0 0
2 2 (3,3),N 0 0 0 0
3 3 (3,4),N 2 1 0 0
4 4 (3,4),N 2 1 0 0
5 5 (3,4),N 1 1 1 0
6 6 (3,4),W 1 2 1 0
7 3 (3,4),W 1 2 1 0
8 4 (3,4),W 1 2 1 0
9 5 (3,4),W 0 2 2 0
10 6 (3,4),S 0 3 2 0
11 3 (3,4),S 0 3 2 0
12 7 (3,4),S 0 3 2 0
13 8 (3,4),S 0 3 2 0
14 9 (3,4),S 1 3 2 0
15 10 (3,4),S 1 3 1 1
16 11 (3,3),S 0 4 1 1
17 7 (3,3),S 0 4 1 1
18 8 (3,3),S 0 4 1 1
19 9 (3,3),S 1 4 1 1
20 10 (3,3),S 1 4 0 2
21 11 (3,2),S 0 5 0 2
22 7 (3,2),S 0 5 0 2
23 12 (3,2),S 0 5 0 2

CHAPTER 1. INTRODUCTORY CONCEPTS USING BEEPERBOT 21

There are several comments we should make here. This trace was more
detailed than we would generally expect. With a little thought, you can
see that tracing all the values over the lines that do not change values is
probably wasted effort, and can in fact lead to increased errors. Instead you
should focus on the statements that actually change some value such as the
contents of a cell, BB’s location or the contents of one or more bags.

In this example we did not trace the number of beepers created, although
that could easily be done. Tracing the location of BB in the table is probably
more error prone and difficult than simply working on a diagram for most
cases.

In the end, the level of detail you use to trace a program will be a matter
of personal preference. On an exam you may be asked to trace the actions
of BeeperBot given a program and starting with a particular world. While
writing exams you will not have access to BeeperBot. Thus, you must learn
to trace the actions of a program out by hand, predicting what BB will do.
While practicing examples, after you have traced out the example by hand,
and only after, you should run the program in BB and see if the result agrees
with your prediction. If not, work through the example in more detail until
you understand where you went wrong. The exam questions will typically
be mainly marked on the correctness of the final world description.

Remember, BB is always right — in the sense that she always does
exactly what she is programmed to do. Unfortunately programs do not
always do what is expected. Tracing is one way of determining if the program

22 1.8. TWO SAMPLE BEEPERBOT PROGRAMS

has errors, and what they are.

1.8 Two Sample BeeperBot Programs

In order to show how BeeperBot is programmed, we present here two small
programs. Text versions of these programs can be found in a Sample Pro-
grams2, ready to be opened in BeeperBot after downloading.

Example One

Here is a simple program to outline a square using beepers. Note we include
line numbers for reference, they are not part of the code. This part goes in
the program pane, if you are typing it in.

1 # Example Program CMPUT 101 Lec 1&2 Culberson
2
3 define main {
4 do (4) {
5 do (3) {
6 create_beeper
7 move
8 # what happens if the next
9 # turn_right is moved here
10 }
11 turn_right
12 }
13 }
14
15 define turn_right {
16 turn_left
17 turn_left
18 turn_left
19 }

For the initial world, type in

robot 6 6 N

2http://www.cs.ualberta.ca/resources-services/teaching-resources

http://www.cs.ualberta.ca/resources-services/teaching-resources

CHAPTER 1. INTRODUCTORY CONCEPTS USING BEEPERBOT 23

Starting at location (6,6) will ensure that BB does not run into a wall.
You should run this code to see what it does, and trace the code by hand

to be clear you understand each part.

Things to note: There are two activities going on when you run a Beeper-
Bot program. First, the software in the BeeperBot tool is running a process
defined by your program source code. Evidence of this activity can be ob-
served in the sequence of yellow highlights of the source code.

Second, the robot is moving around its world, manipulating beepers.
This activity is controlled by the execution of your program. You can see
evidence of this activity by observing the movements of the robot, and watch-
ing the changing values in the Status pane.

In order to understand programming, you must come to grips with these
two notions of process, and how they relate to one another, or more specifi-
cally, how the processing of your code controls the actions of the robot.

When running the program, also note the iteration counter associated
with each do in the Program pane. Check carefully how the counters are
tested on the completion of each iteration. In particular, follow this code
until you clearly understand how the nesting works. Take the hint from the
comments, and change the program to see how it changes the behavior of
the robot when the turn right command is moved inside the inner loop.

Example Two

Second Example in the notes
draws a spiral with length based on initial pile
define get_all {

while (next_to_a_beeper) {
pick_beeper

}
}

define make_side {
while (has_beeper(0)) {

move_beeper(0,1)
create_beeper
move

}

24 1.8. TWO SAMPLE BEEPERBOT PROGRAMS

}

define restore_bag {
while (has_beeper(1)) {

move_beeper(1,0)
}
reduce the number by one
put_beeper
destroy_beeper

}

define main {
get_all
while (has_beeper(0)){

make_side
restore_bag
turn_left

}

}

This program can use the following initial world description.

robot 7 7 E
beepers 7 7 10

This program draws a spiral. You may wish to turn on the beeper dots
option in the Robot menu to get a better visual effect.

Note that in this program we have chosen to define the various subrou-
tines before the define main line. Nevertheless, the program knows to start
at the correct line, since it is main.

Note the use of beeper bags 0 and 1 to keep track of how many beepers
are left. We use the create beeper command to make copies, scattering them
along one per location.

You are invited to try your hand at making other designs using BB.

CHAPTER 1. INTRODUCTORY CONCEPTS USING BEEPERBOT 25

1.9 Example Program Development

So far we have presented some programs for you to read and follow. Now
the task gets more difficult. Here we outline the steps required to develop
a program for a particular task. Note that in general this is a much more
difficult task than learning the programming language, because it calls for
a special kind of creativity. Like most creative endeavors, it is difficult to
learn by any method other than practice.

Here is the problem. The initial world consists of BeeperBot being lo-
cated at an arbitrary spot in the world, facing in an arbitrary direction. In
the location 1 1 there is a pile of an arbitrary number of beepers. BB must
move to the location 1 1, pick up all the beepers and take them back to its
initial location, and put them down. Or equivalently, create a pile of equal
size.

Here are eight example initial worlds.

robot 7 8 E robot 13 2 W robot 1 3 N robot 1 1 E
beepers 1 1 7 beepers 1 1 2 beepers 1 1 15 beepers 1 1 0
robot 200 356 E robot 21 1 S robot 19 19 N robot 1 1 E
beepers 1 1 750 beepers 1 1 3 beepers 1 1 19 beepers 1 1 10

Algorithms and Generality: Algorithms are just general solutions to
computation problems that we can easily encode in some language. For our
purposes, for now, we can think of an algorithm as a BeeperBot program. In
fact, in the remainder of this chapter we will use the terms interchangeably.

One of the key ideas in algorithm design is the notion of making the
algorithm general. A non-general approach to the above problem for example
would be to consider the top left initial world and then write a program that
first turns BB twice to the left, moves 6 times, turns left again, moves 7
times, then a do loop that picks up 7 beepers, then turns left again, then
moves 6 times, turns left again, moves 7 times, then drop seven beepers.

This program would of course not work at all for any of the other 7
examples, and it would not work for any of the infinity of other possible
initial worlds. Thus this program is not general.

Whenever we ask for a program or algorithm to solve some problem, we
mean that it must work for any instance that fits the general description
given. But this requirement adds significantly to the difficulty of designing
the program.

26 1.9. EXAMPLE PROGRAM DEVELOPMENT

Before going further, it is a good idea to get a high level description of
the major tasks that we will need to have BB perform. This allows us to
focus on particular subtasks, and solve them one at a time, thus simplifying
the overall task.

1. BB must find the corner at location 1 1.

2. BB must pick up the beepers

3. BB must return to the starting location

4. BB must put down the correct number of beepers

Starting with such a high level task description is referred to as top down
design in computing science. Using this high level description as a guide, we
can write some BB code as follows.

define main {
go_to_corner
pick_all_beepers
return_to_start
drop_all_beepers

}

Note however, that we cannot execute this code because none of the
instructions we have used are part of BB’s language! But not to worry!
Because we have the capability of writing subroutines in BB, all we have to
do is write a subroutine for each of these four tasks and we are done. Easy!

So, lets start with the first, namely go to corner. Now we look at our
table of instances and we see some problems. Uh oh. First BB can be at any
location, even, as in the two examples on the right side of the table starting
at location (1,1). Or BB can be very far away as in the bottom left example
of the table. One thing we have going for us is that the cell (1,1) is located
in the corner formed by the two boundary walls. So if we follow along one
of the walls until we reach the corner, we will have solved that issue.

But we also notice that initially BB may be facing in any of the four
directions. Here with a careful look at the Help/Contents menu item we
will find that there are tests such as facing west that we can use to test which
direction BB is facing. We refer to these tests collectively as BB’s compass.

CHAPTER 1. INTRODUCTORY CONCEPTS USING BEEPERBOT 27

With these tools in hand, we can begin to code the first task. First, we
will use the compass to get oriented towards one of these walls, namely the
west wall. This is an arbitrary choice; we could equally choose to find the
south wall first. We will then keep moving until BB hits a wall, then turn
to the south and keep moving until BB hits a wall. We can tell when BB
comes to a wall using the condition front is clear or its negation.

So, following our top down idea, lets write the subroutine go to corner.
Again, we see four subtasks that we must accomplish to do this.

define go_to_corner {
turn_west
go_to_wall
turn_south
go_to_wall

}

But, BB cannot execute this code either because these are also not commands
in the language BB knows. Hmm? Are we actually making progress?

Yes we are. What we must do is keep refining our task descriptions until
we get to a level that is in fact just the commands that are built into the
language. But how do we know we are getting there? Like any creative
task, we have no idea how to communicate this other than to say keep
practicing writing programs until it becomes clear to you. We will complete
this program as an example, which may help.

It turns out that the next level of refinement will allow us to complete
each of the subtasks in the subroutine go to corner. First, to turn west, we
just keep turning left as long as we are not facing west. Here is that routine.

define turn_west {
while (not_facing_west) {

turn_left
}

}

A very similar routine will do for turn south, and we leave that as an
exercise.

To run up to a wall, the following will do.

define go_to_wall {
while (front_is_clear) {

28 1.9. EXAMPLE PROGRAM DEVELOPMENT

move
}

}

So, this completes the first top level task of getting to the corner.
When designing a program with many subtasks like this, it is usually a

good idea to see if the parts are really working as we go along.
Since we only have code for the go to corner subroutine, we must com-

ment out or delete the other routines from the main routine. Once this is
done, we can test that BB will find the corner any starting position. Here
is what your test procedure should look like, except that of course you still
have to supply the code for the turn south subroutine.

define main {
go_to_corner
pick_all_beepers
return_to_start
drop_all_beepers

}

define go_to_corner {
turn_west
go_to_wall
turn_south
go_to_wall

}

define turn_west {
while (not_facing_west) {
turn_left

}
}

define turn_south {
EXERCISE

}

define go_to_wall {

CHAPTER 1. INTRODUCTORY CONCEPTS USING BEEPERBOT 29

while (front_is_clear) {
move

}
}

Try it and verify that it works.
Sticking with our main agenda, we next have to write the subroutine for

main task number 2, the subroutine pick all beepers. This is also left as
an exercise for the reader. Once you have this, you can add it to your test
program, delete the comment symbol from the line in the main procedure,
and verify that BB works thus far.

Now we come to the third main task. And almost immediately we see
that we have a problem. Since we are solving the general problem, we have
to return to some arbitrary location, but if we are running a process based
on our current source code, we have no idea where that location might be!

Clearly we must somehow modify the source code for the first step and
create a memory so BB will know how to return her initial position. If we
could give BB some twine, then she could roll out the twine as she moved to
the corner, and follow it back after she picked up the beepers. BB cannot
deal with actual twine, but we can use beepers to record the trail. We could
try a number of ways. One way is to have BB lay out beepers as she moves
to the corner, then follow them back again. This can be made to work, but
it is a bit tricky. We leave this method as a difficult exercise. Be careful of
special cases, for example what do you do if BB starts out on cell (1,1)?

Instead our approach will be to add beepers to two different beeper bags;
one bag will record the number of moves south BB makes in getting to the
corner, and the other the number to the west. To return she simply moves as
far north as she recorded moving south, and then as far east as she recorded
going west. It turns out that making this general solution using the bags is
not so hard.

First we must modify the subroutine go to corner so that it records the
moves in each of the two directions. We notice that in this routine the actual
moves are made in the subroutine go to wall and that this routine is used
twice, once to find the west wall and again to find the south wall. Since
we want to record two different numbers, we could replace this with two
different routines, but instead we will do the following which seems to us to
separate the tasks a bit more cleanly.

30 1.9. EXAMPLE PROGRAM DEVELOPMENT

First we modify go to wall to record the number of moves in Bag(0).

define go_to_wall {
while (front_is_clear) {
move
create_beeper
pick_beeper

}
}

We cannot leave these beepers in Bag(0) because they would get mixed
up with the beepers from the next move sequence and the ones we pick up
in the corner. So we modify the subroutine go to corner as follows

define go_to_corner {
turn_west
go_to_wall
move_all_1
turn_south
go_to_wall
move_all_2

}

and add the routine

define move_all_1 {
while(has_beeper(0)) {
move_beeper(0,1)

}
}

We leave the routine move all 2 which should move all beepers from Bag(0)
to Bag(2) as another exercise.

Note that we have used Bag(1) to record the number of moves west BB
made, and so it will be the number of moves east BB must make to get
back to her starting position. Bag(2) records the number of moves south BB
made to get to the corner, and so it will be how many moves north BB must
make to return.

So now we are ready to write the routine return to start. The general
idea is fairly straight forward. We first turn north and then move the number

CHAPTER 1. INTRODUCTORY CONCEPTS USING BEEPERBOT 31

of times recorded in Bag(2). We then turn east and move the number of times
recorded in Bag(1).

define return_to_start {
turn_north
move_north
turn_east
move_east

}

We leave turn north, turn east and move east as exercises. Here is the code
for move north. Note that we use Bag(9) as a trash can to hold the beepers
used for counting moves. If desired, you could move these to Bag(0) then
put them down and then destroy them, leaving Bag(9) empty when finished.

define move_north {
while (has_beeper(2)) {

move_beeper(2,9)
move

}
}

You should complete the exercises and thus the entire program and try
it out on a few of the example initial worlds.

Here is one last exercise. How would you modify the program if it was
also required that when BB returns to her starting location she must also
turn to face in the same direction she was facing in the initial world?

Naming Subroutines

It should be apparent that you are free to pick your subroutine names.
Basically, a name has to start with a letter, and then can be any sequence
of letters, numbers or under-bars that you care to make it. The name you
choose is up to you, and has no impact on BeeperBot. For example, in this
program you could change the name go to corner to joe needs coffee and
provided the change is made consistently in the main procedure and in the
define statement, the program will work just the same. Try it if you do not
believe me.

However, you will likely agree that for human readers of your program,
go to corner will be more meaningful.

32 1.10. BEEPERBOT AND THE CONCEPT OF STATE

Never forget that a TA will be marking your code, so you should always
strive to choose names that are as helpful as possible. If the TA is unable
to understand your name choices, you will likely lose marks.

Along this same line of thinking, it is always a good idea to add comments
to explain your routines and code. Again, obscure uncommented code will
lose marks, even if it seems to work correctly.

1.10 BeeperBot and the Concept of State

The two purposes of this section are to (i) introduce some fundamental
terminology used in computing science, and (ii) to present yet another view
of how a process proceeds when a BeeperBot program executes.

All classical digital computation is founded on the concept that a system
(computer, or a component of a computer) is in some discrete state at a
given time and then can make a transition into a different state at a later
time. In modern computers this transition is typically prompted by an input
from some event, and the new state is completely determined by the current
state and the event. During the transition, the system may also generate
some output.

To make this more concrete, consider a very common household example,
an electric light switch. Typically, such switches have two discrete states,
on and off. Suppose a switch is initially off, in which case we say it is in
its initial state. Then someone flips the switch. This is an input event. As
a result, the switch is now in the on state. The transition is from ‘off’ to
‘on’, and as an output (effect) the light comes on. As computations go, this
may seem rather trivial, but as we will see later in the course, collections of
millions of such two state devices are the foundation of every modern digital
computer.

We use the word discrete when referring to state here to distinguish from
continuous. A dimmer switch may have an almost infinite variation of set-
tings, and so might be considered continuous. We are not interested in con-
tinuous systems for this course (although some early non-digital computers
used them.)

Examples of state machines abound in the typical household. For exam-
ple, consider the timer in a typical automatic washing machine, somewhat
simplified. It may have states for fill, wash, drain, rinse, spin and stop. Once
the user sets the knob to fill, the initial state, the washer fills with water.

CHAPTER 1. INTRODUCTORY CONCEPTS USING BEEPERBOT 33

When it senses sufficient water has been let in, it switches to the wash state,
which causes an output of rocking the tub. After a certain elapsed time,
the clock sends an input to switch states and the tub will drain. Then it
fills again, rocks the tub again in the rinse step, switches to the drain state
again, then the spin state and halts.

This idea of stepping through states under precise, deterministic control,
is at the heart of all digital computing. (We ignore bleeding edge ideas
such as quantum computing. Quantum states are a more complex concept.
Similarly, we are ignoring non-deterministic computing, parallel computing,
biological computers, etc. as these require more sophisticated models of
computation. We note however that all these models have a notion of state.)

In BeeperBot when we have a program with no subroutines, we identify
each line number (except blank lines) as the label of a distinct state. (We
discuss how to deal with subroutines in the next subsection.) Since any
program has a finite set of lines of code, this means there are only a finite
number of states associated with such a program. A transition occurs when
we step from one line of code to another, that is we transition from one state
to another. If the line of code is not a do, while or if statement then there
is only one possible next state that the transition can lead to.

If the source line is a if or while statement, then there will be two choices
for the next state, one when the condition is true and one when it is false.
In this case, the event triggering the transition consists of the line of code
together with the value of the conditional. This value in turn depends on
the configuration of the world at the time the statement is executed.

The key idea is to understand that in a computation as we discuss it, the
sequence of actions is uniquely and precisely determined by the states, code
and configuration of the world.

There has to be a starting point, which we call the initial state. In
BeeperBot this is always the line containing the text define main {. Similarly,
the initial configuration is described by the code in the Initial World pane.

We can diagram a BeeperBot program in a straightforward way. Such
a diagram is called a state diagram or a flow chart. This may assist you in
understanding the process associated with a simple program, and in tracing
such a process. Our first example is shown in figure 1.3.

It may be useful to follow this discussion using BeeperBot using the Step
button. First click Reset. The first step after reset highlights the define
main line, which in this program is line 1. This corresponds to the initial
state of the state diagram, which is shaped like a diamond, and has label 1.

34 1.10. BEEPERBOT AND THE CONCEPT OF STATE

2 3move

Program
1 define main {
2 move
3 while (next_to_a_beeper) {
4 destroy_beeper
5 }
6 move
7 }

4

6

5

if next_to_a_beeper

destroy_beeper

if not_next_to_a_beeper

7

move

1

A transition to line 2
on the second "step" with no

robot action or input

Program terminates on the final "}"
closing the define main

(or when it hits a "turnoff" command)

On the third step the
move command is executed,

moving the robot one step
and changing program state

to line 3.

On the first click on "step" the
the program is initiated on the

first line of the program.

World
robot 3 3 N
beepers 3 4 2

Figure 1.3: State diagram containing a while loop

CHAPTER 1. INTRODUCTORY CONCEPTS USING BEEPERBOT 35

The next step transitions to line 2, the move statement. This corresponds
very naturally to state 2 in the diagram. The move instruction has not yet
been executed.

On the next step, the program transitions to state 3, corresponding to
line 3, and during the transition the robot moves one step. We can say
that this transition has an output, which modifies the world configuration
by moving the robot to a new location.

In state 3 there are two possible transitions, depending on whether or
not the robot is next to a beeper in the world. If the robot is next to a
beeper, then the next transition is to state 4. Otherwise, it is to state 6.

Now consider the three states labeled 3, 4 and 5. In the diagram these
form a cycle, 3→ 4→ 5→ 3, where the arrows indicating transitions in the
figure are highlighted. The only way the process can get out of this cycle
is that eventually there is no beeper next to the robot. Fortunately, the
transition from state 4 to state 5 has the effect of destroying one beeper in
the world in the cell next to BB. Since this happens every iteration of the
cycle, eventually no beepers will be left in the cell. It should be apparent
that if there are two beepers next to BB, then the process must iterate this
cycle two times before it can transition to state 6. If instead the initial world
had placed ten beepers in this cell, then the process would iterate ten times.

As a final note, there are three types of transitions in the state diagram:

1. Action or output transitions; e.g. move, destroy beeper, turn left etc.

2. Conditional or input transitions; while and if. There are always exactly
two transitions out of any state corresponding to a conditional. It is
possible to model the do statement in a way similar to the while, by
inventing a counter. We leave this as something to think about in one
of the exercises.

3. Null (epsilon) transitions; transitions on lines of code such closing
braces, define statements etc. These do not interact with the world,
and are simply there to make the diagrams complete.

In the next two sections we explore some further insights that can be
garnered from these diagrams.

36 1.10. BEEPERBOT AND THE CONCEPT OF STATE

2 3move

Program
1 define main {
2 move
3 if (next_to_a_beeper) {
4 destroy_beeper
5 }
6 move
7 }

4

6

5

next_to_a_beeper

destroy_beeper

not_next_to_a_beeper

7

move

1

A transition to line 2
on the second "step" with no

robot action or input

Program terminates on the final "}"
closing the define main

(or when it hits a "turnoff" command)

On the third step the
move command is executed,

moving the robot one step
and changing program state

to line 3.

On the first click on "step" the
the program is initiated on the

first line of the program.

World
robot 3 3 N
beepers 3 4 2

Figure 1.4: State diagram on an if statement.

CHAPTER 1. INTRODUCTORY CONCEPTS USING BEEPERBOT 37

1.10.1 Illustrating the difference between if and while

We frequently find first time students get confused between if and while
statements, sometimes using one when they need the other. In figure 1.4 we
illustrate code that is identical to that in Figure 1.3 except that the while
has been replaced by if. Note the difference this makes in the state diagram.
Now there is no cycle on states 3, 4 and 5. (Line 5 never gets highlighted by
the process.)

If 1 or more beepers are placed in cell (3,4) in the initial world (two are
placed in the illustration) then when the program is in state 3, the transition
to state 4 follows. From state 4, there is a transition to state 6, which has
the effect of destroying one beeper. But from state 6 there is no transition
back to state 3, so the other beeper is never destroyed. If ten beepers are
initially placed, still only one is destroyed, the other nine escape without
injury.

If no beepers are placed initially, then the transition from state 3 is
directly to state 6, so no attempt to destroy (the non-existent) beeper is
made. This is good, because an attempt to destroy a beeper that is not
there will cause a run time error.

1.10.2 Subroutines, Abstraction and State Diagrams

It is usually possible to rewrite a BB program containing subroutines so
that is has no subroutines. The idea is to simply to copy the code in the
subroutine and replace the line that calls it. Of course, if there are several
lines calling the routine, then each of them has to be expanded this way.
And if the original subroutine called other subroutines, then the process has
to be repeated until there are no calling statements left. From a coding point
of view, this is generally a bad idea. The program can rapidly become hard
to understand.

However, we show how to use this idea to come up with state labels for a
program that has subroutines. And we illustrate why it pays to use abstrac-
tion. Figure 1.5 shows two ways to use state diagrams when subroutines are
allowed.

Note that in this example the initial state is 6, since line 6 is the define
main line.

The idea we use on the left side of the figure is to label the state by two
numbers separated by a dot. The first number represents the calling line,

38 1.10. BEEPERBOT AND THE CONCEPT OF STATE

the second indicates the particular line in the subroutine. If the subroutine
in turn calls another subroutine, then we would add more dots and so on.
As you can see this gets messy, and we had to fold the diagram up like a
snake to make it fit.

But on the right hand side of Figure 1.5 we make use of the power of
abstraction. Here we include only the states corresponding to lines in the
main procedure. We label the arrows representing transitions with the name
of the subroutine indicating the external effect of the subroutine, and ignore
the details of how the subroutine is implemented. We refer to this as an
Abstract State Diagram.

We could draw a separate diagram for the procedure turnaround. Its
initial state would be labeled 1, and its last state would be 4. We leave this
as an exercise for the reader.

CHAPTER 1. INTRODUCTORY CONCEPTS USING BEEPERBOT 39

7

Program
1 define turnaround {
2 turn_left
3 turn_left
4 }
5
6 define main {
7 turnaround
8 turnaround
9 }

6 7.1

7.27.3 turn_left7.4 turn_left

8 8.1 8.2

8.38.49

turn_left

turn_left

Detailed State Diagram

7

6

8

9

turnaround

turnaround

Abstract State Diagram

Figure 1.5: BeeperBot State Example Two

40 1.11. SAMPLE BEEPERBOT QUESTIONS

1.11 Sample BeeperBot Questions

The following are sample questions for BeeperBot. Some of these questions
are easier than others. An exam will typically have a similar mix. Note that
on an exam you will not be able to run BeeperBot to check your answers
so it is important that you can do these on your own. However, if you are
struggling or unsure of your answer, fire up BB and try it!

1.11.1 Tracing Questions

1. Given this World: (Recall that the 4 at the end of the robot command
puts 4 beepers in bag(0).)

robot 5 5 N 4

and this Program:

do (6) {
if (has_beeper(0)) {

put_beeper
move

} else {
turn_left

}
}
turn_off

(a) Draw a state diagram corresponding to this diagram. How do you
deal with with the loop created by the do(6) program line?

(b) When executed, and BB turns off

i. What direction is BB facing?
ii. Where is BB located?

iii. How many beepers remain in BB’s beeper bag 0?

2. World:

robot 5 5 N 0
beepers 5 5 1

CHAPTER 1. INTRODUCTORY CONCEPTS USING BEEPERBOT 41

beepers 5 6 1
beepers 5 7 1
beepers 5 8 1
beepers 5 9 1

Program:

while (next_to_a_beeper) {
pick_beeper
move

}

(a) How many beepers will BB pick up?

(b) If the ”while” is replaced by ”if” how many beepers would BB
pick up?

3. Caution this one contains some tricks!
World;

robot 5 5 N 7

Program:

define turnsouth {
while (not_facing_east) {

turn_left
}

}

define movenorthandput {
turnsouth
move
create_beeper
put_beeper

}

define main {
do (3) {

42 1.11. SAMPLE BEEPERBOT QUESTIONS

movenorthandput
}

}

(a) Where will BB be when it turns off?

(b) How many beepers does BB drop?

(c) Will BB be next to a beeper when it turns off?

(d) How many beepers will be in beeper bag 0?

1.11.2 BeeperBot Programming Questions

1. Write a program so that when BB starts in arbitrary location (x, y)
facing an arbitrary direction D the program stops with BB in location
(y, x) and facing in the opposite direction from D. For example, if
BB starts in (3, 50) facing North then it should move to (50, 3) facing
South.

2. Write a program to have BB make a 5x3 rectangle outline with beepers.

3. BB starts in cell 5 5 facing north and there are an unknown number
N of beepers in cell 5 5 (i.e. N beepers next to BB).

(a) Write a program to have BB form a line of N beepers running to
the north, starting from the cell BB is in. (one beeper per cell)

(b) Write a program to have BB place a diagonal line of N beepers
running to the northeast. (one beeper per cell).

4. BB starts in cell 5 5 facing north and there are an unknown number N
of beepers in cell 5 5 and either 0 or 1 beepers in beeper bag 0. Write
a program to have BB form a line depending on the number of beepers
in her bag. If she has 0 beepers in her bag, BB should form a line of
N beepers running north. If she has 1 beeper in her bag, she should
form a diagonal line running to the northeast.

5. BB starts in some cell facing east. She has K beepers in her bag, for
some integer K >= 0. Program BB to lay a line of beepers to the east,
one per cell, until either she runs out of beepers, or she comes to a
wall.

CHAPTER 1. INTRODUCTORY CONCEPTS USING BEEPERBOT 43

6. BB starts in an arbitrary cell, facing in an unknown direction. Have
BB move to position (5,5) facing north.

1.11.3 * Advanced Questions

These questions are for those seeking more challenge or insight than the
usual 101 level course.

1. Given this world:

robot 5 5 E
beepers 6 5 1
beepers 6 7 2
beepers 6 3 3
beepers 2 3 1

and this program

define main {
while (front_is_clear) {

move
while (next_to_a_beeper) {

pick_beeper
turn_left

}
}

}

Trace the path followed by BeeperBot, indicating where she will stop.
Do your trace on the following diagram.

44 1.11. SAMPLE BEEPERBOT QUESTIONS

2. Using the program from previous question, suppose you have the fol-
lowing world

robot 5 5 N
wall 5 6 N
wall 6 6 E
wall 6 5 E
wall 4 5 E
wall 4 6 E
wall 5 4 N
wall 6 4 N

Here is what the world looks like:

Add beepers statements to this world so that when the program ter-
minates, the robot is on cell 2 1. Do not change any of the world
statements already in the world, and do not change the program.

CHAPTER 1. INTRODUCTORY CONCEPTS USING BEEPERBOT 45

To think about: Recall that the beepers you add to the world
file are input to the program. In this case, you can also think of
placing the beepers as a kind of program itself guiding the robot. Now
consider that the BeeperBot Graphical User Interface (window) that
you program in is itself in fact a program running on your computer,
and this program takes as input your BeeperBot program code and
your world file. This kind of viewing a program as data input to
another program has many levels in a modern computer system.

3. One way of negotiating certain types of mazes is to alway keep your
right hand on the wall. If when you enter a maze you move so that
your right hand never loses contact with the wall, you are guaranteed
that you will eventually return to your starting point. You could use
your left hand instead, but don’t try switching half way through!

The goal of this exercise is to implement a rule in BeeperBot to follow
a wall until she reaches a beeper. Here are some sample worlds and
their pictures.

46 1.11. SAMPLE BEEPERBOT QUESTIONS

You should write one program that works on all of these and similar
worlds. Remember, in each case BB should follow the wall she is
initially facing until she reaches the beeper. It does not matter which
direction she chooses to follow the wall.

Hint: the program solution I have in mind has a mere 11 lines of code.

4. In Section 1.10.2 we said “ It is usually possible to rewrite a BB pro-
gram containing subroutines so that is has no subroutines.” We then
used this idea to develop detailed state diagrams that work when there

CHAPTER 1. INTRODUCTORY CONCEPTS USING BEEPERBOT 47

are subroutines. However, this does not always work this well. In par-
ticular, subroutines in BeeperBot can be recursive, an idea we have
not otherwise pursued in this chapter. Consider the following code

define main {
destruction

}

define destruction {
if (next_to_a_beeper) {

destroy_beeper
destruction

}
}

starting with this world

robot 3 3 N
beepers 3 3 15

The subroutine destruction is recursive because it sometimes calls it-
self. Recall that a state diagram is supposed to be finite and depend
only on the source program. Explain what goes wrong with the “dot”
notation when applied to this program. Hint: run the program at slow
speed and watch the Call stack pane. Try again after changing ‘15’
to ‘50’ in the Initial World.

5. Since we mentioned recursive subroutines in the previous question, you
may wish to explore recursive programming a bit further. Trace the
following program by hand on the world below, and predict where the
robot will be when it stops, and how many beepers will be in each of
Bag(1), Bag(2) and Bag(3).

define main {
pickup

}

define pickup {

48 1.11. SAMPLE BEEPERBOT QUESTIONS

if (next_to_a_beeper) {
pick_beeper
move_beeper(0,1)
pickup

}
move
if (next_to_a_beeper) {

pick_beeper
move_beeper(0,2)
pickup

}
create_beeper
pick_beeper
move_beeper(0,3)

}

and the world

robot 3 3 E
beepers 4 3 2
beepers 5 3 2
beepers 7 3 1

Now run the program and check your answers.

CHAPTER 1. INTRODUCTORY CONCEPTS USING BEEPERBOT 49

1.12 BeeperBot History

BeeperBot is a program written as a CMPUT 401 course project at the
University of Alberta in the winter of 2008. Dr. Ken Wong was the course
instructor, and the team members were Matthew Johnson, Timothy Lam,
Mark Nicoll, Adrienne Paton, and Matthew Whitton. Joe Culberson was the
client, generating the project proposal as an expansion of the basic concepts
of similar beeper manipulating robots such as Karel the Robot 3, Guido
van Robot (GvR) 4, and RUR-PLE5. So, BeeperBot is Yet Another Beeper
Robot, but we did not like YABR as an acronym.

BeeperBot has three operating modes: primitive, standard and aux-
iliary. As the names suggest, these are related to the standard operation of
GvR, Karel etc. with standard mode being the most similar.

Even in standard mode, there are some differences in the syntax of
the programs, and BB has two additional commands, create beeper and
destroy beeper which operate on the set of beepers in the room in which
BeeperBot is standing. These make it easier to emulate a Turing-equivalent
model of computation. The syntax of BeeperBot uses braces for code blocks,
and parentheses to delineate conditionals. This may make the transition to
languages such as Java or C/C++ easier for students.

In primitive mode, BeeperBot has no beeper bag, and all commands
related to the beeper bag(s) are disabled. In addition, the do command is
disabled. It is not too hard to see that BeeperBot primitive is neverthe-
less still computationally complete. Code for this mode is also (except for
recursion) easily represented within a simple class of structured finite state
machines. Thus, this should be ideal for teaching concepts of state, both
within code, and the state (configuration) of the world.

Auxiliary mode gives BeeperBot a total of 10 beeper bags, plus opera-
tors to move beepers between bags, and to test whether any bag is empty.
All transfers to/from the world must go through bag 0, the default bag
available in standard mode. Together with the in-code controls on program
execution speed available in all modes, the hope is to illustrate concepts
such as abstraction, memory organization, variables and other algorithmic
concepts as typically implemented on a RAM/RASP6 von Neumann archi-

3http://karel.sourceforge.net/
4http://gvr.sourceforge.net/
5http://rur-ple.sourceforge.net/
6http://en.wikipedia.org/wiki/Random_access_stored_program_machine

http://karel.sourceforge.net/
http://gvr.sourceforge.net/
http://rur-ple.sourceforge.net/
http://en.wikipedia.org/wiki/Random_access_stored_program_machine

50 1.12. BEEPERBOT HISTORY

tecture7, without the necessity of introducing a high level language and all
the attendant issues of syntax and compilation that that entails.

7http://en.wikipedia.org/wiki/Von_Neumann

http://en.wikipedia.org/wiki/Von_Neumann

Chapter 2

Representation: Adding
Meaning

So far, the programs with BeeperBot have been designed to show how the
programming language works, some concepts such as code blocks, condi-
tional statements and loops, and to show certain concepts of computing,
such as state and abstraction. However, the programs have been largely
meaningless outside of BeeperBot’s world. This initial meaninglessness is
deliberate; it must be kept in mind that the core computational model never
has any understanding. BeeperBot is a slave to the code that is written, and
follows instructions without any understanding of the programmer’s inten-
tions.

To be useful to us we must somehow attach meaning to the computation.
That is, we must represent aspects of the world that are of interest in such
a way that the computation reflects those aspects accurately.

Representation is deeply entwined with the design of effective algorithms,
and thus all aspects of computing. In this part of the course, we will consider
some aspects of representation, still using BeeperBot as our computational
model.

To summarize we present a simplified list of steps for learning to program.

1. Learning the language: For BeeperBot the language is very elementary
compared to a modern programming language. For modern general
purpose languages like C++ this step can require major effort.

2. Learning how to use the language to do elementary “mechanical” tasks:

51

52 2.1. CHARACTERS AND STRINGS

In Chapter 1 we showed how to move piles of beepers and the exercises
and labs led you to develop algorithms to follow paths of beepers, or
sweep all beepers from an enclosed space.

3. Learning how to represent and model real world problems: In the next
session we discuss representing and displaying text, and in the second
section we discuss the more difficult task of representing numbers and
doing elementary arithmetic.

2.1 Characters and Strings

All knowledge in our world can be communicated by strings of characters.
We start with an alphabet, say a. . . z, and string them together into words,
such as “words”, which are separated by spaces. But the spaces themselves
may be thought of as characters, called blanks. These sequences of words
are broken into lines for convenience, but in computers these line breaks are
special characters that indicate when the computer should start to display
a new line. Sets of lines may be broken up into pages, and sets of pages are
broken up into books, and sets of books form libraries. But in the end, we
can if we choose think of all the writing of all of mankind as a huge string
of characters.

Pictures also may be thought of as strings of characters. The typical
computer or television screen is made of thousands or millions of tiny pixels
which are turned off or on, tuned as to brightness, and color. The information
for a pixel is stored as a sequence of bits. Bits are characters drawn from a
binary alphabet, that is an alphabet of size two, typically represented by ‘0’
and ‘1’. The entire photo you display on your background is a huge string
of these symbols in the computer.

It is not just text and photos that can be thought of as being strings
of characters. Your DNA is typically viewed as a string of characters, en-
coded as certain chemicals. These strings are instructions that are read and
interpreted by complex biological mechanisms to construct you.

In this section we show how we can represent a simple alphabet, A. . . Z,
in two ways using BeeperBot. Why two ways? The best representation for
a machine is not typically the best representation for a human.

We consider one representation that is easy to interpret and manipulate
with BeeperBot code, and is also easy to input through a sequence of beeper
piles in the Initial World description. We have BB convert this sequence

CHAPTER 2. REPRESENTATION: ADDING MEANING 53

into a display that, if you kind of squint a bit, looks roughly like the letters
you would expect to see. We call this display the output.

Here are the two representations we use.

Input On the bottom row, starting at the position (1,1), we place piles of
beepers with the following representation: A⇔ 1, B ⇔ 2, . . . Z ⇔ 26.

Output Display the characters by placing beepers to make crude letters as
people typically see them.

Actually, we only make our program deal with ‘A’ and ‘B’. We call this
baby version program BABA.

The representation in the sequence in the bottom row is the input to
BABA. Here is something to consider. The Initial World is input to
BeeperBot, and when BeeperBot is Reset, this creates the sequence of beep-
ers in the World which is then taken as the input to BABA. One might say
BeeperBot feeds BABA.

In addition to the two character representations, BABA also uses the
second row as memory storage. On this row, it keeps a marker (i.e. a
beeper) to remember which column the next output letter should start in.

In Figure 2.1 we illustrate these by looking at a screen capture of a partial
computation. Note the input has a pile of 30 beepers at the end. This pile is
big enough that it cannot be mistaken for a character and is used to indicate
that there are no more characters in the input. Such a symbol is called an
end-of-input eoi or end-of-file eof character. See question 1 in the sample
questions at the end of this chapter.

Given this, we can describe the program that does the translation at a
high level using pseudo-code. Pseudo-code is a kind of abstraction where we
present the overall outline of a program in statements that are concise, but
which do not execute on any computation machine. The description is found
in Figure 2.2.

If you look at the implementation code of BABA in the sample code files,
you will find that a large part of it is simply code to produce the pattern for
the two letters. Such a set of descriptions for a complete alphabet is called a
font. The document you are now reading is represented in your computer by
a sequence of characters and a set of fonts saying how to display them. Here
are some example font variations bold, italics, large, tiny and of course we
can also change color. You will likely agree the font we provide in BABA is
fairly crude in comparison.

54 2.1. CHARACTERS AND STRINGS

 Input area
Marker for

 next output

 Next character
goes here

Figure 2.1: BABA

main
go to the home position
place a marker on the 2nd row, first column
translate

translate
go to the home position
move east along the first row to find the next input
count and destroy to determine the character
if character is end-of-input

turn off
move to the west end of the second row.
move east until the output marker is found.
destroy the output marker
lay out the pattern of the next letter
create a new output marker
repeat translate

Figure 2.2: Pseudo-code Description of the BABA Program

CHAPTER 2. REPRESENTATION: ADDING MEANING 55

Another consideration in choosing the machine representation is mem-
ory or resource usage. Consider that if we want ten ‘A’s we only need ten
beepers on ten cells using our input format. But we would need 5 rows by 40
columns and 100 beepers to store these same characters in output format.
Similarly, if a modern computer had to store all the font information for
each character in a word document, then it would require a huge amount of
memory for even a short document. Instead, it stores the font information
for each character once, and uses a short representation for the characters
themselves (Typically using ASCII which we will briefly discuss later.).

For study purposes, you do not need to memorize the BABA code. The
intent of this section is merely to point out some algorithmic ideas, and
give the first clue that representation is important to the ease of designing
algorithms.

2.2 Counting and Number Systems

Consider this sequence of characters “123”. You probably think that this is
a number, which is also represented by the character sequence “one hun-
dred and two tens and three’. You might also agree that the following
also represents the same number “three and twenty and one hundred’.
Note that aside from replacing “two tens” with “twenty” we also reordered
some of the words. Now consider “321”. You will likely agree that this is
not the same number, but why exactly?

The number system we use in our everyday lives is a positional base
ten system, with the digits ‘0’. . . ‘9’. There are many other systems that
have been used throughout history. To explore the variety of systems use
Google to search for “number systems”, “Roman Numerals” and “babylonian
number system” as a starting point.

In addition to the base ten system, we will also look at the binary number
system in this course, as it is the arithmetic system used in digital computers.

But first we will take you all the way back to elementary school and the
idea of numbers and counting using BeeperBot.

2.2.1 Unary Arithmetic

Suppose that you were born before the invention of writing and number
systems. You have a flock of sheep to tend. At night you want to be sure all

56 2.2. COUNTING AND NUMBER SYSTEMS

the sheep enter the fold, before you retire to watch TV. (Well, okay, maybe
there was no TV then either.)

How can you be sure that some sheep has not gone astray? Well, what
you have is a bag full of pebbles, one pebble for each sheep. You dump the
pebbles on a board, and as each sheep enters the fold, you drop a pebble
back in the bag. If, when the last sheep enters, all the pebbles are back in
the bag, then you must have all the sheep. If there are pebbles left over,
then you need to go find the missing sheep. And if you run out of pebbles
before the last sheep enters the fold, you are likely to receive an irate phone
call from a neighbor. (What, no phones?)

These pebbles are a unary representation of the number of sheep you
have. This matching of pebbles to sheep is in fact precisely what counting
is. Suppose you wanted to compare the size of your flock to that of your
neighbor. Since sheep run around it might be hard to tell which of two large
flocks is the larger. But if you compare your bag of pebbles to your neighbors
the task is much easier.

You simply match the pebbles up in pairs, one from each bag, and the
bag that has some left over represents the larger flock. In fact, you also have
the difference as the number of pebbles that are left over.

If you want the total of your two flocks, simply dump the two bags
together.

In the sample programs, we will show BeeperBot programs to do arith-
metic using unary representation. Example programs for addition, subtrac-
tion and multiplication will be discussed.

BB Unary Addition

We will assume BB is facing two piles of beepers, as shown in figure 2.3 and
wants the total placed in the third square. One of the requirements we make
is that the inputs are preserved.

Here is one sample code that will produce this. First the main program.

unary addition example, not destroying inputs
define main {

get the first input
move
get_and_restore

CHAPTER 2. REPRESENTATION: ADDING MEANING 57

Input World Output Final Result

Figure 2.3: Unary Addition

get the second input
move
get_and_restore

output the result
move
display_sum
move

}

Next is the get and restore subroutine. Keep in mind that pick beeper
always puts the beeper in bag 0. However, we need to restore the pile of
beepers, so we do this by moving each beeper to bag 1, and each time one is
moved, we also create one beeper. Notice this matching is similar to how we
described counting sheep above; each beeper moved is like a sheep passing
the gate, and each one created is like adding a pebble to the bag of pebbles.
We also include the display sum routine, which merely moves the beepers to
bag 0 then drops them.

pick up the beepers and put them in
bag 1, at the same time recreating
the pile
define get_and_restore {

while (next_to_a_beeper) {

58 2.2. COUNTING AND NUMBER SYSTEMS

pick_beeper
}
while (has_beeper(0)) {

move_beeper(0,1)
create_beeper

}
}

drop all the beepers from bag 1
RECALL put_beeper only works on
bag 0
define display_sum {

while (has_beeper(1)) {
move_beeper(1,0)
put_beeper

}
}

Unary Subtraction

Subtraction presents us with new difficulties. Suppose we subtract 4 − 10.
The answer is negative, namely −6. But BB cannot print a minus sign, so
we have to choose some other representation. We will adopt the notation
that putting one beeper to the left of the result means it is negative. This
is illustrated in figure 2.4.

Unary Subtraction Input Result is Negative

Figure 2.4: Unary Subtraction

CHAPTER 2. REPRESENTATION: ADDING MEANING 59

The code used in this subtraction program is found in figure 2.5, except
for turn subroutines defined previously.

On the left side is the main code. This is similar to addition, except the
inputs are kept separate, the first going to bag 2, before the second is put in
bag 1. On the right side the display difference is somewhat more complex.
In the first while loop, as long as both bags have beepers, we simply trash
one from each (by moving to bag 9). If bag 1 runs out before bag 2, then
the remaining ones in bag 2 are moved to the pile. This is the case when the
result is positive (or zero). On the other hand, if bag 2 runs out first, then
the loop exits with some beepers remaining in bag 1. This indicates to BB
that it should put down a minus sign, which occurs in the ‘if’ following the
first while. Then BB puts the remainder of bag 1 on the pile.

Note the second ‘if’ and the second ‘while’ do nothing if bag 1 is empty,
which is the case when the result is not negative.

Unary Multiplication

When we multiply two numbers, say, 2 by 3, we actually mean add 2 three
times, i.e. 2 + 2 + 2. We can use this simple idea to teach BB to do
multiplication. In unary representation, this should be quite simple because
it basically requires BB to pile up beepers. If BB can create multiple copies
of the pile, then the rest is very simple. So, given a pile of beepers, how
do we teach BB to copy this pile of beepers into another pile? BB can use
one of the bags to store the original pile of beepers, and then another one
to store the newly created pile.

The code is displayed in Figure 2.6. The only significant difference be-
tween this and the code in unary addition is that it copies the second pile n
times, where n is the number that was in the first pile. Like the subtraction,
it must keep the two piles in different bags, so it puts the first pile in bag 2
after getting it. Then it moves these to another bag one by one, adding a
copy of the second pile for each beeper moved.

2.3 Base Ten Arithmetic

According to the web site ‘Agriculture - Sheep/Wool Industry - Australia’1

Australia had approximately 102 million sheep in the 1990s. If we tried

1http://www.anra.gov.au/topics/agriculture/sheep-wool/index.html#howmany

http://www.anra.gov.au/topics/agriculture/sheep-wool/index.html#howmany

60 2.3. BASE TEN ARITHMETIC

unary subtraction example
define main {

get the first input
move
get_and_restore
we have to keep
the two inputs separate
move_1_to_2

get the second input
move
get_and_restore

output the result
move
display_difference
turn_south
move

}

pick up the beepers, put in
bag 1, and recreate pile 1
define get_and_restore {

while (next_to_a_beeper) {
pick_beeper

}
while (has_beeper(0)) {

move_beeper(0,1)
create_beeper

}
}

define move_1_to_2 {
while (has_beeper(1)) {

move_beeper(1,2)
}

}

recall first value is in bag 2
and the second is in bag 1
define display_difference {

while (has_beeper(2)) {
if (has_beeper(1)) {

this does matching
bag 9 is trash
move_beeper(1,9)
move_beeper(2,9)

} else {
if bag 2 is greater
positive, put down
move_beeper(2,0)
put_beeper

}
}
if bag 2 gone before 1
we have a negative result
if (has_beeper(1)) {

turn_west
move
this is a negative sign
create_beeper
turn_east
move

}
put down beepers in bag 1
note: if result is postiive
this loop does nothing.
while (has_beeper(1)) {

move_beeper(1,0)
put_beeper

}
}

Figure 2.5: Subtraction Code

CHAPTER 2. REPRESENTATION: ADDING MEANING 61

unary multiplication example,
with two inputs
not destroying inputs
define main {

get the first input
move
get_and_restore

move first to bag 2
while (has_beeper(1)) {

move_beeper(1,2)
}

go to the second input
move

for each beeper in bag 2,
add copy of input 2
while (has_beeper(2)) {

move_beeper(2,3)
get_and_restore

}

output the result
move
display_product
move

}

define get_and_restore {
while (next_to_a_beeper) {

pick_beeper
}
while (has_beeper(0)) {

move_beeper(0,1)
create_beeper

}
}

define display_product {
while (has_beeper(1)) {

move_beeper(1,0)
put_beeper

}
}

Figure 2.6: Unary Multiplication Code

62 2.3. BASE TEN ARITHMETIC

to represent that number with a bag of pebbles, it would require a very
large bag. Note that the string of characters “120 million” or the equivalent
string “120,000,000” is much smaller and easier to manipulate. Furthermore,
adding say 60 million to 50 million would require the BeeperBot unary pro-
gram to execute hundreds of millions of program steps, picking up beepers,
creating beepers and putting down beepers. Yet, most likely you have al-
ready realized the total is 110 million, and you certainly did not take 110
million steps to discover this. Unary computation is not efficient.

As noted earlier, the choice of representation can make an enormous
difference in how hard it is to do a computation. Also, as noted in the intro-
duction, different societies throughout history developed different represen-
tations. If you are interested in a bit of frustration, consider the difficulty of
writing a program to add two numbers using the Roman numeral2 notation.
Of course there were also other number bases used such as the Babylonian
System3 which used base 60. If you thought memorizing the 10 times table
in grade school was onerous, imagine learning the 60 times table!

Likely the base ten system has come to dominate in the world of human
arithmetic in large part because it corresponds to the number of fingers most
of us have, and for the range of numbers used in every day transactions, it
provides a good balance between the number of digits used to represent a
number and the number of different symbols that need to be remembered.
To be fair, the Babylonians did not require 60 different symbols, but rather
compositions of two symbols4. Twenty was also sometimes used as a base,
apparently because unshod people could also use their toes. And occasionally
5 was used.

In this section we are going to take you all the way back to elementary
school to recall the algorithms for doing arithmetic using the base ten system.
You will then be asked in Lab 3 to implement a simple base ten addition
algorithm for BeeperBot. Our expectation is that once you have done this
it will be easier for you to understand the binary (base 2) number system,
by seeing the parallels to the base ten system. Variations of binary number
representations are used in all modern computers to do arithmetic. In ad-
dition, we want to reinforce the concept that our representation of numbers
is inherently intertwined with algorithms. In fact, we could argue that most

2http://en.wikipedia.org/wiki/Roman_numerals
3http://www.math.wichita.edu/history/topics/num-sys.html#babylonian
4http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/Babylonian_

numerals.html

http://en.wikipedia.org/wiki/Roman_numerals
http://www.math.wichita.edu/history/topics/num-sys.html#babylonian
http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/Babylonian_numerals.html
http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/Babylonian_numerals.html

CHAPTER 2. REPRESENTATION: ADDING MEANING 63

scientific knowledge is encoded as an interaction between representation and
algorithms.

2.3.1 Counting in Base Ten

In Section 2.2.1 on Unary arithmetic, we said the fundamental concept of
counting was matching, in the sheep case matching pebbles to sheep. Recall
that the bag of pebbles indicated the number of sheep provided we could
match each pebble to one sheep.

Is there a corresponding notion in base ten? Yes, there is. Using the
symbols ‘0’. . . ‘9’ and some simple rules (i.e. algorithm) we can generate an
unbounded sequence of strings of digits. The first string we start with is ‘0’,
and as you know this means no sheep has passed the gate. When a sheep
goes by the last digit is increased by using the rules 0 → 1, 1 → 2 and so
on, where → can be read as “becomes”. The only tricky part is when the
rightmost digit is a ‘9’. In this case the ‘9’ is replaced by ‘0’, and the rule is
applied to the next digit, and so on.

Here is an example of counting, with ‘s’ standing for ‘sheep’.

0
1 s
2 ss

. . .
9 sssssssss

10 ssssssssss
11 sssssssssss

There are two ways to interpret this list. The matching, or counting, view is
to match the string of digits to the last sheep in the corresponding list. The
cardinality view is to use the string to identify the total quantity of sheep in
the corresponding line. Notice how much easier it is to interpret ‘11’ than
the corresponding list of ‘s’s. Is it in fact correct?

This should already be familiar to you, and so we leave the rest for you
to think about. In the exercises at the end of this section you are asked to
program BeeperBot to count in unary and in base ten.

2.3.2 Conversion of Unary to Base Ten

Suppose I have a large collection of pennies. How do I get the base ten
representation? Well, consider using dimes and loonies. The first step is to

64 2.3. BASE TEN ARITHMETIC

break the group into groups of ten like this.

pppppppppp
pppppppppp
pppppppppp
pppppppppp
pppppppppp
pppppppppp
pppppppppp
pppppppppp
pppppppppp
pppppppppp
pppppppppp
pppppppppp
pppp

Notice that there are 4 left over. Now each set of ten pennies can be
replaced by a dime.

dddddddddddd
pppp

Now, we create groups of ten on the dimes.

dddddddddd
dd
pppp

and we replace each (there is only one in this example) group of dimes by a
loonie.

L
dd
pppp

We now see that we have 1 loonie, 2 dimes and 4 pennies, so we started with
124 pennies.

Wait! There was some magic there. Our base ten monetary system uses
a loonie to represent ten dimes and each dime represents ten pennies. We
could extend this with the $10, $100 and $1000 bills, to get higher powers of
ten, representing 1000, 10000 and 100000 pennies respectively. We say that

CHAPTER 2. REPRESENTATION: ADDING MEANING 65

100000 is the 5th power of 10, written in shorthand as 105, because it is the
result of multiplying 10 by itself 5 times.

Our base ten number system uses position to represent powers of ten.
Thus, 124 means 1× 102 + 2× 101 + 4× 100. Note that we define 100 to be
1, and frequently we do not write 100 because multiplication by one has no
effect. But we write it here for completeness.

Again, note the efficiencies introduced by using base ten. We have re-
placed 124 pennies by 1 Loonie, 2 dimes and 4 pennies, or a total of 7 coins.

2.3.3 Addition Base Ten

Suppose we want to add two numbers such as 685 + 417. We will think in
terms of money and position.

So, 685 is 6 Loonies, 8 dimes and 5 pennies and 417 is 4 Loonies, 1 dime
and 7 pennies.

The total is 10 Loonies, 9 dimes and 12 pennies. In positional form

6 8 5
+4 1 7

=10 9 12

Of course we don’t usually write our sums that way. So we remove a group
of 10 pennies and replace it with 1 dime, positionally speaking.

10 9 12
=10 10 2

Then we replace the 10 dimes with 1 Loonie

10 9 12
=10 10 2
=11 0 2

and finally we replace ten Loonies with one 10-dollar bill.

10 9 12
= 10 10 2
= 11 0 2

= 1 1 0 2

It is probably worth noting that we simply applied our algorithm from
the previous subsection on each column, after adding in the carry. You have
probably been taught in grade school to do the carry as you add each column.
To think about: see that these two approaches produce the same result.

66 2.3. BASE TEN ARITHMETIC

2.3.4 Programming BeeperBot to Work in Base Ten

In Lab 3 you will be asked to complete a BeeperBot program to do addition
in base ten. Basically the algorithm you use is a direct implementation of
the algorithms described so far, where beepers replace pennies and columns
in BB’s world represent position.

The key to your task is to have BB replace a group of ten in one pile
with one beeper in the next pile to the west. However, there is a difficulty.
BB does not know the number ten specifically. All BB can ask is whether
one or more beepers exist in a specific bag or the location where it stands.

For example, suppose you have picked up the current digit and put them
in bag 1. Now you want to remove a block of ten beepers, creating one carry
if there are ten to start with. You might write a loop such as this

do (10) {
move_beeper(1,4)

}

However, if there are only 7 beepers in bag 1 when the loop first starts then
there will be a run time error saying no beeper to move.

Well, you can try a fix like this

do (10) {
if (has_beeper(1)) {

move_beeper(1,4)
}

}

This will eliminate the run time error, but the problem now is that when
you finish the loop you do not know if BB ran out before the loop finished
or not.

The next page has the lab stub (except the turning routines which you
have seen before) for easy reference.

The first routine you have to fill in is basically the same as the one we
had for unary addition.

The second routine is the more complex one. It must compute the carry
and how many remain in the current digit.

CHAPTER 2. REPRESENTATION: ADDING MEANING 67

PART 1: STUDENTS HAVE TO FILL IN THE FOLLOWING
#Choose a bag to keep the sum in.
define add_digit_to_sum {

}
END OF PART 1

PART 2: STUDENTS HAVE TO FILL IN THE FOLLOWING ROUTINE AND
ADD ANY ADDITIONAL ROUTINES THEY NEED TO FINISH
define put_digit_and_save_carry {

}
END OF PART 2.

this takes BB to the spot above of the next column of digits.
define go_to_next_column {

turn_around
move
move
move
turn_west
move
turn_south

}

#main program
#assumes robot starts just above
#the inputs, facing south.

define main {
add three columns --
the fourth iteration is in case of a carry out

do (4) {
move
add_digit_to_sum
move

68 2.4. BASE TWO OR BINARY ARITHMETIC

add_digit_to_sum
move
put_digit_and_save_carry
go_to_next_column

}

}

2.4 Base Two or Binary Arithmetic

Aside from the fact that the typical human has ten fingers, the choice of ten
as the base of our number system is arbitrary. As we will see in later parts of
the course, for modern computers a base of two is a more reasonable choice.

In a binary system there are only two digits to worry about, 0 and 1.
Like the base ten system, it is positional with the digits representing powers
of 2 instead of powers of 10.

There are many web sites that provide further reading on binary num-
bers’5 which can be found by doing a google search on “binary numbers”.

In our study of binary numbers, it is probably easiest to simply start
counting. Counting is simply the process of repeatedly adding 1 to our
current number. As in base ten, in binary we also start with ‘0’ representing
zero.

2.4.1 Counting in Binary

The binary counting process parallels the method of counting in base ten.
Recall that in base ten, when we add one to a number, we start with the
rightmost digit and increase it by 1. If it is ‘9’ then we change it to a ‘0’ and
carry one to add to the next digit.

In base two, we also start by considering the rightmost digit and add
one to it. If the current digit is a ‘0’, then adding one changes this to a ‘1’
and the digits to the left are not changed. If the current digit is a ’1’, then
adding one changes it to a ‘0’, and we carry one to add to the next digit to
the left.

So, the following represents the first few numbers counting in base 2 and
in base ten

5http://en.wikipedia.org/wiki/Binary_numeral_system

http://en.wikipedia.org/wiki/Binary_numeral_system

CHAPTER 2. REPRESENTATION: ADDING MEANING 69

Base 2 Base 10
0 0
1 1

10 2
11 3

100 4
101 5
110 6
111 7

1000 8
1001 9
1010 10
1011 11
1100 12
1101 13
1110 14
1111 15

To continue counting, start at the right most digit of the number and add 1
according to the two rules. So for example, to get the next binary number
after 1111 we add 1 to the rightmost digit to make it 0 and carry 1 to add
to the next. Again, this means the next digit is zero and carry one to the
next. This gets repeated again, and we get a 4th zero, with a carry of 1.
This time there is no one to start with and so we get 10000 as the binary
representation of sixteen.

Here is an informal algorithm for incrementing a binary number by 1.

position is set to 0.
carry is set to 1.
while (carry equals 1) {

if (digit at position is 1) {
set digit in position to 0
add one to position

} else {
set digit in position to 1
set carry to 0

}
}

70 2.4. BASE TWO OR BINARY ARITHMETIC

To count sheep, initialize the string to ‘0’ and execute this algorithm
once for each sheep that passes.

2.4.2 Representation and Conversion from Base Ten to Bi-
nary

Suppose we wish to represent the number of sheep in ‘sssssss’ by a binary
number. First, we group into sets of two ‘ss ss ss s’ noting we have one left
over. We replace the pairs by single ‘t’s to represent ”twos”. Thus, ‘ttts’.
We now break t’s into groups of two ‘tt t s’ and replace each pair with an
‘f (for four). This gives ‘fts’, that is there is one four, one two and one one.
Writing it in the usual form we have ‘111’.

This generalizes, in the same way to arbitrary numbers. For example,
ssssssss → tttt → ff → e, where e is eight or 1000, since there are no f’s,
t’s or s’s left over.

Can we express this more succinctly? Yes, by using division. Suppose we
start with 157 in base ten. We divide by 2 to get 78 with remainder 1. This
corresponds to 1 ‘s’ left over, so we know the rightmost (0th) bit is 1. We
then divide 78 by 2 to get 39 with 0 as a remainder. No remainder means
there is no t. We continue this until the number becomes 0. Here is a table
of the complete conversion, where each row after the first is obtained from
the previous by dividing by 2. The remainder is always 0 or 1, and forms
the binary number from right to left.

Number Remainder Binary
157 1 1
78 0 01
39 1 101
19 1 1101
9 1 11101
4 0 011101
2 0 0011101
1 1 10011101
0

Here is an algorithm for conversion to binary.

while (number is not 0) {
if (number is odd) {

CHAPTER 2. REPRESENTATION: ADDING MEANING 71

add 1 to the left of the binary representation
} else {

add 0 to the left of the binary representation
}
divide number by 2, and drop any fraction

}

2.4.3 Conversion of Binary to Base Ten

To illustrate this, let us do an example, 1101 = 1×23+1×22+0×21+1×20,
where the numbers on the right are in base 10. Now 23 = 2 × 2 × 2 = 8,
22 = 4, 21 = 2 and 20 = 1. Also, 1 times anything is just 1 so we see
that 11012 = (8 + 4 + 0 + 1)10 = 1310 as expected. Here we have added
the subscript 2 to the binary and 10 to the base ten numbers just to clarify
which base we are working in.

Taking the binary number from the previous section we have 10011101 =
27 + 24 + 23 + 22 + 20 = 128 + 16 + 8 + 4 + 1 = 157. It is good to see that
this agrees with the number we started with in the previous section.

Here is an algorithm for conversion from binary to base ten.

set power to 1
set result to 0
while (there are more binary digits) {

if (next digit is 1) {
add power to result

}
multiply power by 2

}

When this finishes, result will hold the result we want. Notice that when
the next digit is 0, we do not need an else, since adding 0 to the result has
no impact. But every time we go around the while loop we must double
the power for the next iteration.

2.4.4 Addition in Binary

To add two numbers in binary we must first memorize the base two addition
table. Here it is, it should not take you too long.

72 2.4. BASE TWO OR BINARY ARITHMETIC

+ 0 1
0 0 1
1 1 0 /1

The bottom right entry says that 1 + 1 = 0 with carry 1. All other entries
have carry 0.

Now suppose we want to add 110101 + 11001. The addition would look
like this, where the c’s indicate there is a carry in of 1.

cc c
110101
11001

1001110

It is always a good idea to check results when we can.
1101012 = (25 + 24 + 22 + 20)10 = (32 + 16 + 4 + 1)10 = 5310.
110012 = (24 + 23 + 1)10 = (16 + 8 + 1)10 = 2510.
1001110 = (26 + 23 + 22 + 21)10 = (64 + 8 + 4 + 2)10 = 7810.
53 + 25 = 78 and this agreement adds confidence that our result is correct.

2.4.5 Multiplication in Binary

Here is the multiplication table for binary numbers.

× 0 1
0 0 0
1 0 1

Again, this should be fairly easy to memorize. Note there are no carries
generated by this table.

Multiplication works as it does in base ten, except it is much easier. Here
is an example.

1101
101
1101

0000
1101
1000001

CHAPTER 2. REPRESENTATION: ADDING MEANING 73

Notice that where there is a one in the multiplier, we simply copy the
multiplicand. Otherwise, we insert a row of zeroes. Just as in base ten, each
row is offset by one space to the left from the row above.

Again, let us check the answer.
11012 = (23 + 22 + 20)10 = (8 + 4 + 1)10 = 1310.
1012 = (22 + 21)10 = (4 + 1)10 = 510.
10000012 = (26 + 20)10 = (64 + 1)10 = 6510.
And checking we also find 13× 5 = 65.

2.5 Binary Number System Variations

We continue to develop binary number representations in this section.

2.5.1 Fractions in Binary

If we consider the base ten number 83.76 you know that it means 83 76
100 . In

fact, you can also expand this as

83.76 = 8× 101 + 3× 100 + 7× 10−1 + 6× 10−2

= 80 + 3 +
7
10

+
6

100

= 83 +
76
100

Recall that a negative exponent on 10 just means divide the number by
10 that number of times. In the last line we simply combine terms over a
common denominator.

The “.” in 83.76 is known as the decimal point. We also know that
not all fractions have a finite decimal representation, for example 1

3 has the
infinite repeating representation 0.333

We can also expand the binary number system in a similar way. The “.”
should now be called by the more general name radix point, since decimal
relates to the value ten.

Suppose we have the binary fractional number 101.101. We can expand
this binary into decimal as

101.101 = 1× 22 + 0× 21 + 1× 20 + 1× 2−1 + 0× 2−2 + 1× 2−3

= 4 + 1 +
1
2

+
1
8

74 2.5. BINARY NUMBER SYSTEM VARIATIONS

= 5 +
4 + 1

8

= 5 +
5
8

Let us look at this in more detail. Notice that 101 base two on the left
of radix point is 5 in base ten, and the 101 on the right of the radix point
also becomes 5 in base ten. We know that 8 base ten is 1000 in base two.
So, we can see that 5

8 when written in base two is 101
1000 .

We can now write the expansion above using only binary digits as follows.
Note, that below we express every number, including the exponents and
divisors in binary, just to emphasize our ornery, err I mean binary nature.
But otherwise, this expansion exactly parallels the one above.

101.101 = 1× 1010 + 0× 101 + 1× 100 + 1× 10−1 + 0× 10−10 + 1× 10−11

= 100 + 1 +
1
10

+
1

1000

= 101 +
100 + 1

1000

= 101 +
101
1000

The key here is to realize that we are representing our numbers in differ-
ent ways.

Perhaps it is over kill, but let us again convert the base two numbers 101
and 1000 using the techniques we already learned, namely (using subscripts
to indicate base)

1012 = (4 + 1)10 = 510

10002 = 810

Combining these we see

101.1012 =
(

5 +
5
8

)
10

= 5.62510

More directly, we can convert binary to decimal by noticing that the
digits to the right of the binary radix point correspond to the base ten

CHAPTER 2. REPRESENTATION: ADDING MEANING 75

values 1/2 = 0.5, 1/4 = 0.25, 1/8 = 0.125 and so on. So 0.101 in binary
corresponds to 0.5 + 0.125 = 0.625.

What about conversions the other way, from base ten to base two with
fractions? First consider converting a fraction. Suppose we have the fraction
12
8 . Since 1210 is 11002 and 810 is 10002 we see that in binary the equivalent

value is

12
8 10

=
1100
10002

Now, how would we get this with a radix point? Well, we do the division.
In this case, since we have one followed by three zeroes in the denominator,
we simply shift the radix point three points to the left.

1100
1000

= 1.100 = 1.1

To check our answer, we first note that 12
8 = 1 + 4

8 = 1 + 1
2 . Then we note

this is 1.1 in binary as derived above.
Just as 1/3 has no finite exact decimal expansion, similarly many frac-

tional values have no exact binary expansion. One example is that in base
ten 0.3 = 3

10 . However, this value requires an infinite repeating digit expres-
sion in binary. Since we do not require long division in binary for this course,
we will leave this topic at this point, though the more adventuresome may
wish to try working it out as an exercise.

We can add binary fractions exactly as we add binary numbers without
fractions just as we do in base ten. Just remember to line up the radix
points of the two numbers. Thus, to add 101.101 and 11.1 we pad a couple
of zeroes to the second number and add like this

101.101
11.100

1001.001

It is always a good idea to check your addition by converting all the numbers
to base ten, and we leave that as an exercise.

We can also multiply by fractions. To multiply 1001 by 0.01 we simply
shift the radix point two places, just like base ten, namely the result is
10.01. If the multiplier has more digits, we simply extend the methods we
already developed, remembering where the radix point should be. Here is
an example multiplication.

76 2.5. BINARY NUMBER SYSTEM VARIATIONS

101.101
× 11.1
10.1101
101.101

1011.01
10011.1011

You should verify the above by converting to base ten, and then doing the
multiplication and comparing the results.

2.5.2 Finite Binary Representations and Powers of 2

Digital computers have the restriction imposed by engineering constraints
that we only get a fixed number of binary digits, or bits as they are commonly
known, to represent a number. If we want to represent numbers that require
more bits then we have to use software to combine these smaller chunks.
The term word6 is used somewhat ambiguously to refer to the number of bits
available as single entity on a certain machine. This varies from machine to
machine.

Early home computers had a limit of eight bits called a byte.7 Memory
and disk sizes are still typically listed in terms of the number of bytes they
can hold. A half byte, or 4 bits, is called a nibble. For our purposes we will
use qualified forms such as a 16-bit-word, 32-bit-word or 64-bit-word. These
are the most common sizes used, although other sizes have been used, such
as a 36-bit-word.8

In figure 2.7 we illustrate the effect of having a word size of 4-bits. The
first thing to note is that if we have n bits, then we have 2n different bit
patterns that we can represent. Figure 2.7 displays the 24 = 16 patterns
when n = 4. Each time we add another bit, we double the number of
patterns, since we have all the old patterns with 0 in the new position, plus
all the old patterns with 1 in the new position.

In figure 2.7 we have listed the patterns so that traversing clockwise gives
us the binary counting order, with the binary representation of zero at the
top. So what is that ”Over Flow Boundary”line indicating? Well, suppose
we add 1 to the binary representation of 15, namely 1111. The next number

6http://en.wikipedia.org/wiki/Word_(computing)
7http://en.wikipedia.org/wiki/8-bit
8http://en.wikipedia.org/wiki/36-bit

http://en.wikipedia.org/wiki/Word_(computing)
http://en.wikipedia.org/wiki/8-bit
http://en.wikipedia.org/wiki/36-bit

CHAPTER 2. REPRESENTATION: ADDING MEANING 77

0000
0001

0010

0011

0100

0101

0110

0111
1000

1001

1010

1011

1100

1101

1110

1111

0
1

2

3

4

5

6

7
8

9

10

11

12

13

14

15

Over Flow
Boundary

Binary Numbers
On 4 Bits

Figure 2.7: Binary Numbers on 4 Bits

78 2.5. BINARY NUMBER SYSTEM VARIATIONS

is 16, or in binary 10000. But we only have 4 bits, so the carry ”gets lost”
and the result is 15+1 =0.

In fact, if we add any two binary numbers on 4 bits which produce a
result greater than 15, the result will be incorrect , since the carry out of
the 4th bit has no where to go. We say it ”overflows” the limits of our word
size. This can be detected exactly when there is a carry out of the last digit
of the word during an addition.

With a modern machine using 64 bit words we can represent much larger
integers, since there are 264 = 18, 446, 744, 073, 709, 551, 616 different pat-
terns. This range of values is usually sufficient for most everyday purposes.
Nevertheless, if we wish to use very large numbers, we have to write software
to use multiple words to represent very large values.

What if we want to use fractions? Well, we have several choices. One
is to simply assumed that a certain number of bits represent the fractional
part in all numbers. The other is to store the location of the radix point,
perhaps as part of the word. One way of doing this is called floating point,
but we will not discuss it in this part of the course.

2.5.3 Two’s Complement

If we want to allow subtraction just as in BeeperBot we need to modify
our representation to include negative numbers. In BeeperBot we placed a
beeper to the left of a pile to indicate the pile represented a negative value.
Similarly, we could for example say that if the left most bit is a 1 then the
rest of the bits represent a negative number. But there are problems with
this approach, and so it is not in fact how we represent negative numbers.

There is in fact a clever way to implement negative numbers and do
addition and subtraction, as well as detect overflow conditions. In figure 2.8
we illustrate this Two’s Complement representation on 4 bits.

Notice that the bit patterns are arranged in exactly the same order as
they are for the usual binary number representation. However, we change
the meaning of the patterns when the leftmost digit is a 1. Starting with
0 at the top, and following a counter-clockwise order we get the numbers
−1,−2, . . . ,−8. These negative numbers correspond to the bit patterns with
a 1 in the leftmost bit. The other half of the bit patterns correspond to non-
negative numbers. Since 0 is not considered a positive number, we have
one less positive number than negative, for example here the largest positive
number is 7, the smallest negative is −8.

CHAPTER 2. REPRESENTATION: ADDING MEANING 79

0000
0001

0010

0011

0100

0101

0110

0111
1000

1001

1010

1011

1100

1101

1110

1111

0
1

2

3

4

5

6

7

-1

Over Flow
Boundary

Two's Complement
On 4 Bits

-2

-3

-4

-5

-6

-7
-8

Figure 2.8: Two’s Complement on 4 Bits

80 2.5. BINARY NUMBER SYSTEM VARIATIONS

So, everywhere except across the overflow boundary, moving clockwise
increases the number by 1, and counterclockwise decreases the number by
1. The range of numbers is now −8,−7, . . . , 7.

The non-negative numbers are represented by the same bit patterns as in
standard binary. What about the negative numbers? Well, to find negative
5 for example, you could draw the wheel as in figure 2.8 and count down
to −5. But for a 64 bit representation, and a number such as −1398745163
this might not be convenient.

Because we have the clockwise pattern set that corresponds to addition,
we can find negative 5 by the following reasoning:

Two’s Complement Negation Insight The bit pattern for −X should
be the set of bits which when added to the bit pattern for X gives us
the bit pattern for 0.

Here X is any integer that can be represented in the two’s complement form
with the number of bits we are using.

Now comes the trick! Note that 1111 is −1, and in general the binary
string of all 1’s corresponds to −1 for any number of bits. If we add 1 to −1
we get 0. Suppose we have a number expressed in 8-bit binary as 01101010.
The one’s complement of a binary string is created by replacing each 0 by a
1, and each 1 by a zero. So the one’s complement of that string is 10010101.

What happens if we add a binary number to its one’s complement?

01101010
10010101
11111111

That’s right, we get −1. To get zero we just need to add 1 more. (Remember,
the carry on the last one just drops off the earth because we only have 8
bits.)

So how do we get the two’s complement? Well, we just showed it is one
more than the one’s complement, so the rule is find the one’s complement,
and then add 1. So for the above string

CHAPTER 2. REPRESENTATION: ADDING MEANING 81

01101010 original X
10010101 ones complement

1 add one
10010110 two’s complement

Testing The Result
01101010

+ 10010110
00000000

This technique works for any two’s complement number except 10 . . . 00.
That is, to find the negative of a negative, you use the same rule, and get
the representation of the positive. Why does it fail for the one case? Try
it on the 4-bit representation of −8, 1000 and see! What is wrong with the
answer you get?

To do subtraction when you have two’s complement representation, you
merely need to find the two’s complement and do addition. This saves
circuitry in the computer.

Finally, we need to detect when overflow occurs during addition. In
ordinary binary number representation, we can check for a carry out of
the last digit. But in two’s complement this will not help, since this merely
means we have switched from a negative to a non-negative value; for example
try adding 3 to −2 in figure 2.8. Nor is it sufficient to check the carry out
of the next to the last digit.

There is a simple way to check. First off, convince yourself that adding
a negative and a non-negative will never cause overflow. You should be able
to do this easily on the figure.

Next, notice that if I add any two non-negative numbers that cause
overflow, then the result will be a negative number, and that if I add any
two negatives that cause overflow then the result will be a non-negative.

Given these observations, the test is easy. If the two numbers to be added
have the same sign, that is if the leftmost binary digit in both of them is
either 0 or both 1, and the result is the opposite then overflow occurred.
Otherwise, it is okay.

82 2.6. BINARY REPRESENTATION OF CHARACTERS

2.6 Binary Representation of Characters

Characters are represented in computers by using a particular bit pattern for
each different character. ASCII9 is the most common, and is based on one
byte per character, which means it can represent 256 different characters.
Although this was sufficient for earlier times, with the inclusion of languages
other than English, and the need for many control characters, special sym-
bols etc. more flexibility is required. ASCII is now being supplanted by a
new standard referred to as Unicode10.

2.7 Questions on Representation

The questions here start with programming on BeeperBot, and then move
gradually to binary representations that are used in programing real digital
computers.

2.7.1 BABA and Text Questions

The BABA questions here should be seen as mostly training for general
programming, and students should not waste time memorizing BABA code
in any detail. The questions after “To Think about” may be relevant to
later parts of the course.

Note: Although the BABA program in its current form will run under
primitive mode, for these questions you will find it easier to use BeeperBot
in Auxiliary mode.

1. What would happen if the BABA program were to run on an initial
world that did not have an end-of-input marker?

2. Currently the BABA BeeperBot program in the sample programs only
recognizes and places letters A and B. Modify the program so that it
can also translate 3 to ‘C’, and 4 to ‘D’. Add more letters if you wish.

3. Currently BABA outputs the letters with their bottom pixel on the
third row.

9http://en.wikipedia.org/wiki/ASCII
10http://en.wikipedia.org/wiki/Unicode

http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/Unicode

CHAPTER 2. REPRESENTATION: ADDING MEANING 83

(a) Modify the BABA program so that initially part of the input
will specify which row to put the output letters on. Note that all
letters should display on the same row so you only need to specify
one such number. You may assume that it will always be at least
row 3, or greater.

(b) Add another input to specify which column the first letter should
be placed in. In this way, you can place the output any where on
the screen (above row three).

4. Suppose we want uppercase letters ‘M’, ‘W’ and ’I’. The letters ‘M’
and ‘W’ are wider than the other letters so far, and ‘I’ may be thinner.
If these letters are added to our font, will the BABA program handle
these correctly? Try it, and explain this generality of BABA. (Fonts
in which different characters have different widths are called variable
width fonts.)

5. Assume BeeperBot is using auxiliary mode. Modify the program so
that instead of using a marker on the second row to remember where
the next beeper goes, it keeps track of which column the next character
goes in by storing beepers in a beeper bag.

To Think About

6. Suppose we want to represent upper and lower case letters, as well as
digits, punctuation etc. Is there a better input representation than the
one we have chosen? In what way could it be better?

7. ** Reverse Translation.

(a) Suppose you have a character in its output representation, and
BeeperBot is located on the bottom left cell of the 3x5 display
area. Write a new program to put the numeric value of the letter
in the home location (1 1). Thus, if the letter is A, it should put
1 beeper in location (1 1). If a B then put 2 beepers.

(b) How would you extend this if you had 4 or more letters in your
set of representations? (see question 1).

(c) Now extend this to convert a string of characters to the numeric
(internal) representation.

84 2.7. QUESTIONS ON REPRESENTATION

8. ** Continuing the issues of the previous question, suppose BeeperBot
starts on a cell in a letter, but you do not know which cell. How would
you write a program to recognize which letter BB is on?

Questions 7 and 8 indicate the difficulty of recognizing characters from
images using a computer. On the other hand people much prefer images
— think how difficult reading would be if you really did have characters
represented as numbers from 1 to 26, or 1 to 52 if you want upper and lower
case.

This difficulty is one of the problems with trying to get machines to
read hand writing, and thus the continued necessity of using keyboards. On
the other hand, the distinct ability of humans to recognize even severely
distorted characters and the difficulty of writing programs to do the same, is
now used in a clever way as both an anti-bot device to protect websites from
certain types of programs, and at the same time to assist the digitization of
old books. Read more online about reCAPTCHA11.

2.7.2 Counting Questions

1. Write a unary addition program that allows for signed arithmetic. Use
the same sign convention as the unary subtraction program, namely
that there is a single beeper to the west of each input if the number is
negative.

2. Write a program that will add a column of values in unary. The first
location should be the number of numbers to be added. If this is n,
the following n piles of beepers are the numbers to be added.

3. ** How would you do division in unary? If you divide 31 by 3, what
does it mean? Consider both quotient and remainder.

2.7.3 Arithmetic Questions

1. Program BeeperBot to count in Unary. On the first row put a pile
with one beeper, on the second a pile of two beepers, and so on. This
should continue until the user presses the pause or reset button.

11http://recaptcha.net/

http://recaptcha.net/

CHAPTER 2. REPRESENTATION: ADDING MEANING 85

2. Program BeeperBot to count in base ten. Starting near the bottom,
and say in column 20, BeeperBot should represent the number one on
the first row, then two on the second and so on until the user pushes
the pause or reset button. You will likely need to set some kind of
boundary markers, say piles of 11 beepers, one on each end of each
number so that BeeperBot will know when to stop, especially if you
are using no beepers to represent the number 0. If you are using some
other representation of the digits, be sure to describe it.

3. Write a BeeperBot program to convert a base ten number to unary.
Assume the robot starts at right end of a string of digits, represented
by piles of 0 to 9 beepers, and to the left of the last digit there is a
wall. Once the wall is reached, move north one step and deposit a pile
of beepers equal to the number represented in base ten.

4. Here we consider a base 5 system. It may help you to think of this
in monetary terms. You can use pennies, nickels and quarters, and
you get a new coin called the ‘cubie’ which is worth 5 quarters, or 125
pennies.

(a) In base ten we use digits ‘0,1,2,3,4,,6,7,8,9’. In base 5, what digits
do we need?

(b) Convert the number represented 137 in base 10 into its equivalent
base 5 notation. Use the monetary idea to help if needed.

(c) Complete the addition 134 + 242 in base 5.

5. Practice converting numbers to and from binary. Start with a base
ten number, convert it to binary, then convert the result back to base
ten, and check your answer. Repeat this several times until you are
confident.

6. Practice adding numbers in binary. Check your answers by converting
to base ten and check your results.

7. Practice multiplying numbers in binary. Check your answers by con-
verting to base ten and check your answers.

8. Explain why the binary multiplication technique in Section 2.4.5 works.

86

Chapter 3

Logic and Circuits

We have now seen that the base ten number system that we are familiar
with can be implemented directly, if somewhat clumsily, using the BeeperBot
model of computation. We also saw that there are other choices of number
systems, in particular the binary number system.

It is time to move on now to a different computational model, the one that
underlies modern computers. We may see BeeperBot again briefly when we
discuss algorithms, but otherwise we will leave our little robot behind now.
However, the basic coding constructs, such as while and if that we have
learned will be used again later when we use the Program Exploration Tool,
which is a tool for understanding the underlying mechanisms of a language
that is similar to modern languages such as C. You will likely also notice
other concepts that carry forward. We certainly intended that you should.

But for now, we switch our focus to another aspect. Recall that binary
numbers are called binary because they use only two digits, 0 and 1. Mod-
ern computers are built on electronic devices which have only two states.
We label these states 0 and 1 (or false and true) for easy reference and
interpretation.

Note that throughout, we will assume 0 is equivalent to false, and that
1 is equivalent to true.

3.1 Boolean Logic

Boolean logic was developed by George Boole (1815-1864)1.

1http://en.wikipedia.org/wiki/George_Boole

87

http://en.wikipedia.org/wiki/George_Boole

88 3.1. BOOLEAN LOGIC

While working with BeeperBot we introduced Boolean statements, state-
ments which may take true or false values, depending on the state of BB’s
world. For example

• next to a beeper has value true when BB is standing next to one or
more beepers, and false otherwise.

• has beeper(2) is true if there is one or more beepers in Bag 2, and false
if there are none.

Boolean statements can also be defined in other worlds, for example “is
wearing red” would be true for the person wearing red, false for someone
who is not.

For generic references, we usually use a letter such as P,Q .. to represent
a Boolean statement.

For example, if n is a non-negative integer, then we could let P = “(n >
0)”. Here is a table showing how P relates to n.

n = 0 n = 1 or n = 2, or . . .

P is false P is true

Note how this corresponds to next to a beeper and has beeper(2) .
The value false is often replaced by F, or 0. The value true is often

replaced by T or 1. We will use 0 and 1 notation from now on.
Here is another example that you should think about carefully. Let

n, m be arbitrary integers. We will call such letters variables when we start
programming. Now consider the Boolean statement “(n < m)’, which we
will designate by the letter P. Remember, 1 means true, 0 means false. We
leave the last few entries as an exercise. If you do not see it, draw a number
line.

n m P
1 2 1
2 7 1
6 2 0
−3 −5 0
−3 −2 ?
7 −5 ?

CHAPTER 3. LOGIC AND CIRCUITS 89

3.1.1 Elementary Boolean Functions

We can also have Boolean functions. Given one or more Boolean statements
P, Q, a function f(P,Q,) assigns some value for each combination. The only
output values we allow are again 0 and 1. We call P,Q etc. the inputs.

In our first example f is the NOT function and is a function of one input
Boolean value. We can write NOT(P), but usually write ~P or P.

We can express functions such as NOT using truth tables, which are
tables that show for each possible input what the output should be. Here
the input is P, the output is ~P.

Input P Output ~P
0 1
1 0

What are the other possible functions of one Boolean input? Well, there
are not that many, because we only allow 0 or 1 as output values. Here is a
complete list or all possible Boolean functions of 1 input.

Input Output Functions
P F0 F1 F2 F3

0 0 1 0 1
1 0 0 1 1

Why is this a complete list? Well, there are only two inputs, so there are only
two rows in the table. With only two rows, there can only be 22 = 4 different
patterns for the columns, each column representing one of the functions.

We see that F1 is the NOT function described previously. The functions
have the following naming conventions which should be apparent.

F0 FALSE

F1 NOT

F2 IDENTITY

F3 TRUE

Now let us consider functions of two inputs. The first is the AND
function. Here is the definition of AND using a truth table.

90 3.1. BOOLEAN LOGIC

Inputs Output
P Q P AND Q
0 0 0
0 1 0
1 0 0
1 1 1

The AND function is true exactly when both of its inputs are true. We could
write this as AND(P,Q), but usually prefer to write P AND Q, treating
AND as an operator similar to multiplication in arithmetic, for example
5 × 6. In fact,you should learn the short hand that P ∧ Q means P AND
Q. Other texts sometimes use PQ.

The second function of note is OR. It is defined by the following truth
table.

Inputs Output
P Q P OR Q
0 0 0
0 1 1
1 0 1
1 1 1

OR is true when at least one of its inputs is true. We could write OR(P,Q)
or P OR Q, but mostly use the symbolic notation P ∨ Q.

In table 3.1 we define all 16 Boolean functions on two inputs.

C
H

A
P

T
E

R
3.

L
O

G
IC

A
N

D
C

IR
C

U
IT

S
91

Inputs Functions
P Q F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Common Function Names
F0 FALSE F15 TRUE
F1 AND F14 NAND
F2 F13

F3 P F12 ~P
F4 F11

F5 Q F10 ~Q
F6 XOR F9 EQUAL
F7 OR F8 NOR

Table 3.1: All two input Boolean functions and some common names. Note that in the name table the
functions on the right are the negations of the functions in the same row on the left.

92 3.1. BOOLEAN LOGIC

3.1.2 Universality of NOT, OR and AND.

In computing we often want to know what is the minimal set of operations we
need to perform any computation. For logic, it turns out that any Boolean
function can be built from the functions NOT, AND and OR, and thus we
might refer to the set of these three as being universal.

To be more precise, we say that two Boolean functions are logically equiv-
alent if for any input set they agree on the output. What we mean by univer-
sality in this case is that given any Boolean function, it is possible to build
another Boolean function composed of just NOT, AND and OR operators
that is logically equivalent to it.

For example, the NAND function, F14 in table 3.1, is NOT(P AND
Q) which using the standard notation can be written as P ∧Q. We can see
this by creating a truth table. Here we present the result in stages. First
we fill in the result of P ∧ Q from the truth table for AND. Then we find
NOT of this result by applying the definition of NOT from its truth table
to each of the results from the AND. Finally, we list the NAND definition
from the table above so it is easy to compare and see the results are the
same for each of the input value pairs.

P Q P ∧ Q ~(P ∧ Q) NAND
0 0 0 1 1
0 1 0 1 1
1 0 0 1 1
1 1 1 0 0

The NOR function, F8 in table 3.1, is NOT(P OR Q) which using the
standard notation can be written as P ∨Q.

For another example, consider the function XOR. We can implement
this using the function composition (P ∨ Q) ∧ (P ∧Q). Here is a truth
table showing how the two compare. In this table we use the shorthand
A = (P ∨ Q), and B = (P ∧ Q). Thus, the entire function is A ∧ B. This
kind of substitution is common in mathematics, and is a form of abstraction
very similar to the writing of subroutines that we did in BeeperBot. We
break the formula down into these parts, and compare to XOR as shown
previously.

CHAPTER 3. LOGIC AND CIRCUITS 93

P Q A B A ∧ B XOR
0 0 0 0 0 0
0 1 1 0 1 1
1 0 1 0 1 1
1 1 1 1 0 0

To see how this works, consider the column headed A. Simply look up for
each pair of input values the corresponding output in the definition of OR.
Do the same using AND for the column headed B. For the column headed
A∧B the inputs are A and B, but we have to apply NOT to B before using
it. If this is unclear, you can insert a NOT(B) column and fill it in as an
exercise. The last two columns are identical which completes our argument
that the two functions are logically equivalent.

The XOR function is the same as NOT(P EQUAL Q). A good exercise
in understanding is to reason through why (P∨Q)∧ (P ∧Q) is true exactly
when P is not equal to Q. This may take you a while, but is well worth the
effort.

Observe that if you consider the functions reading down from F8 they
are just the negations of the same functions reading up the table from F7.

The exercises ask for further equivalences. In a subsequent section we
show a generic construction technique for any Boolean function on any num-
ber of inputs.

3.1.3 How Many Boolean Functions are There?

As we allow the number of inputs to grow, we get a very rapid growth in
the number of possible Boolean functions. Notice that for two inputs we got
24 = 16 functions. Where did this come from? Well, the two inputs gave us
22 = 4 different input pairs, namely 00, 01, 10 and 11. Now for each of these
pairs of inputs a function can output either 0 or 1. Since there are 4 pairs,
that means the total choices for making a function is 2×2×2×2 = 24 = 16.

Consider for example the case where we have 3 inputs. With three in-
puts there are 23 = 8 possible input patterns, corresponding to the binary
representation of the binary numbers 0 . . . 7. Similar to the table for two
inputs, we now have two choices, 0 or 1, for each of the 8 different input
patterns, or 28 = 256 different functions of three inputs.

In general, for n inputs we have 2n different input combinations, and
thus 22n

different functions. Table 3.2 has a short list illustrating how fast
this grows as n increases.

94 3.2. ELEMENTARY BOOLEAN CIRCUITS

Inputs Input Combinations Functions
n 2n 22n

1 2 4
2 4 16
3 8 256
4 16 65536
64 18,446,744,073,709,551,616 incomprehensible

Table 3.2: The Number of Boolean Functions on n Inputs

Although Boolean logic is very simple at the outset, in some sense this
enormous growth in possibilities with increasing number of bits is what al-
lows it its computational power.

3.2 Elementary Boolean Circuits

The reason Boolean logic is relevant to digital computers is that it is com-
paratively easy to build bi-state devices using electronic circuits. We will
not develop the electronic level here. Instead we will look at logic gates that
can be built from transistors and such.

Figure 3.1 shows six of the two input gates shown above. The first gate

AND
P

Q

P ^ Q
NOTP

0

1

1

0
~P OR

P

Q

P v Q

NOR NAND XOR

Figure 3.1: Boolean Gates

we will consider is the NOT gate, shown in figure 3.1. As with all gates
the inputs are shown on the left, and the result of the operation called the
output is on the right. For the NOT gate, when we have a 0 as input, shown
on the top left, we get a 1 as output shown on the top right.

In general to evaluate a circuit we start with certain inputs and follow

CHAPTER 3. LOGIC AND CIRCUITS 95

them through the circuit to obtain the output. At each gate, we apply the
logical definition of the gate to obtain the output. If we repeat this for every
input combination, we can determine the complete function computed by
the circuit.

A key observation is that for every Boolean logic expression there is a
corresponding circuit, and vice versa.

Let us consider the simple Boolean function P ∧ P. Note that in evalu-
ating this, we first have to evaluate P and then do the AND. To make this
clear, let us state it in the equivalent form P AND NOT(P). We construct
a circuit for this in figure 3.2. Notice how the input from P is split so that it

P

NOT

AND

Figure 3.2: Gate Construction of P AND NOT(P).

can be input to two different gates. We can split any line as many times as
required. However, we cannot merge lines, because the result would not be
determinate. So, if we have two outputs we either treat them as two different
functions, or we must combine them logically using a two input gate. In the
example, the output of the NOT gate and the direct line from P are inputs
to the AND.

Suppose input P=0. Then the output of the NOT gate can be deter-
mined from the truth table for NOT to be 1. Thus, the inputs to the AND
gate are 0 and 1. We use the truth table of AND to find the output in this
case should be 0.

Suppose input P =1. Then the output of the NOT gate can be deter-
mined from the truth table for NOT to be 0. Thus, the inputs to the AND
gate are 1 and 0. We use the truth table of AND to find the output in this
case should also be 0.

Thus, this circuit implements the one input function we called FALSE.
If you want to think about it logically, it says that the statement “P is true
and P is false” must always be false, whatever P is. Here is the corresponding
truth table.

96 3.3. GENERAL BOOLEAN FUNCTIONS AND CIRCUITS

P ~P P AND ~P
0 1 0
1 0 0

Figure 3.3 illustrates the circuit corresponding to the logic expression
in the previous section for XOR, which is (P ∨ Q) ∧ (P ∧Q). Be sure

P

Q

NOT

AND

OR

AND

Figure 3.3: Gate Construction of XOR

you understand how the circuit corresponds to the logical expression. For
example, why is the NOT gate between the two AND’s?

Suppose P = 0 and Q=1. Then the inputs to the leftmost AND gate
in figure 3.3 are 0 and 1, and the output of that gate is 0, according to the
definition of AND. The inputs to the OR gate are also 0 and 1 and so
the output of the OR gate is 1. The input to the NOT gate is 0, so its
output is 1. Now, since both inputs to the right AND are 1, its output is
1. Summarizing, for inputs P=0, Q=1, the circuit outputs 1.

You should try the other three input pair possibilities to verify the output
always matches the XOR as defined in table 3.1.

You should practice creating arbitrary Boolean circuits, tracing them
and converting them to logic formulae, and vice versa.

3.3 General Boolean Functions and Circuits

In order to do general purpose computing, we must be able to deal with
arbitrarily complex logical expressions. In particular, we will need to design
circuits that take many inputs and generate multiple Boolean outputs. Each
output can be thought of as a function of the set of inputs, although it often
pays to use some of the same sub-circuits to compute the different values
whenever possible. Reusing sub-circuits is efficient in that it saves in the

CHAPTER 3. LOGIC AND CIRCUITS 97

construction, and furthermore it may make the circuit faster and use less
power.

3.3.1 Multi-input AND and OR Gates

Frequently, we will need to AND or OR several inputs together. For exam-
ple, we may want to perform a certain action only if conditions A, B, C and
D are all true. For this purpose, suppose we have a Boolean expression like
A AND B AND C AND D. Does it matter what order we evaluate this
in? For example, consider (A AND B) AND (C AND D) versus A AND
((B AND C) AND D). Try it and see. What other orders can you find?
You should be able to indicate the different orders of evaluation by inserting
the parentheses in different ways.

What you should learn is that for a sequence of AND’s such as this you
get an output of 1 only if all inputs are 1’s, and if any input is a 0 then the
output is 0. Thus, we could write AND(A,B,C,D) as a multi-input AND
function, and note that the result is 1 if and only if each of the values A, B,
C and D are 1.

Figure 3.4 illustrates circuits for a three input AND. In the upper por-
tion is shown how it could be built with two 2-input AND’s. However, it is
easier to use a 3-input gate as shown in the bottom half.

AND

AND

A
B
C

AND

A
B
C

Figure 3.4: Three Input AND.

98 3.3. GENERAL BOOLEAN FUNCTIONS AND CIRCUITS

Now consider the expression A OR B OR C OR D. Similar to the above
you should find that the result is always 1 if any input is 1, and is 0 only
when all inputs are 0. Again, it does not matter what order the inputs are
evaluated in.

These observations extend in the obvious way to any number of inputs.
The multiple input OR is defined to output 1 if at least one input is a 1,
and outputs 0 only if all inputs are 0. The multiple input AND is defined
to output 0 if at least one input is 0, and outputs 1 only if all inputs are 1.

3.3.2 The Sum of Products Construction

Now consider the function Fdefined on three inputs by the following table.
Note there is nothing special about F, it is just an arbitrary function chosen
from the set of 256 possible ones on three inputs. We have added labels to
the three lines where the function takes the value 1, the labels being Fa, Fb

and Fc.

Inputs Output
P Q R F

0 0 0 0
0 0 1 0
0 1 0 1 Fa

0 1 1 0
1 0 0 1 Fb

1 0 1 0
1 1 0 0
1 1 1 1 Fc

Now consider the labeled lines. Each of these can be thought of as a
sub-function, that is a function of the inputs P, Q and R which is part of
the complete function F . To be more explicit, we think of Fa(P,Q, R) = 1
exactly when P=0, Q=1 and R=0. Similarly, Fb(P,Q, R) = 1 exactly when
P=1, Q=0 and R=0, and Fc(P,Q, R) = 1 exactly when P=1, Q=1 and R=1.
In all other cases, these sub-functions have value 0.

Below we show truth tables for these three sub-functions.

CHAPTER 3. LOGIC AND CIRCUITS 99

Inputs Sub-functions F

P Q R Fa Fb Fc Fa ∨ Fb ∨ Fc

0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 1 0 1 0 0 1
0 1 1 0 0 0 0
1 0 0 0 1 0 1
1 0 1 0 0 0 0
1 1 0 0 0 0 0
1 1 1 0 0 1 1

As is can be easily seen from this table, the original F can be computed by

F = Fa ∨ Fb ∨ Fc

or if you prefer it written out in long form

F (P,Q, R) = Fa(P,Q, R) ∨ Fb(P,Q, R) ∨ Fc(P,Q, R)

So now all we need are logical expressions for the sub-functions Fa, Fb and
Fc. Let us consider Fa. As noted previously, this should have value 1 exactly
when P=0, Q=1 and R=0. Consider the Boolean expression P∧Q∧R. Given
these three values, this expression is 1. If any of P, Q or R have a different
value, then the corresponding term will be 0, and as we saw earlier, in a
multi-input AND expression, if any value is 0 then the result is 0. Thus,
this is exactly the expression we need for Fa. Fb and Fc are easily determined
in a similar manner, and we here present the three sub-functions.

Fa = P ∧Q ∧ R
Fb = P ∧Q ∧ R
Fc = P ∧Q ∧ R

Putting these together, we see that the original function is

F = Fa ∨ Fb ∨ Fc

= (P ∧Q ∧ R) ∨ (P ∧Q ∧ R) ∨ (P ∧Q ∧ R)

Now suppose we have a second function G defined by the following table.

100 3.4. BINARY ADDITION USING LOGIC AND CIRCUITS

Inputs Output
P Q R G

0 0 0 1 Fd

0 0 1 0
0 1 0 1 Fa

0 1 1 0
1 0 0 1 Fb

1 0 1 0
1 1 0 0
1 1 1 0

Note that this “shares” the Fa and Fb results used in F , and has one new
sub-function Fd. Thus, G = Fa ∨ Fb ∨ Fd.

We now illustrate the construction of a circuit to compute these functions,
using a systematic layout method. First, each input is split into two lines,
one negated with a not gate. Then, for each part Fa, Fb, Fc and Fd we
simply connect the inputs that construct that sub-function. Then we OR
the outputs of the AND gates together to get the functions F and G. This is
illustrated in figure 3.5. This technique is called the sum of products method,
and the regular circuit structure is called a gate array.

3.4 Binary Addition using Logic and Circuits

This section assumes you understand binary addition, so you may wish to
review that before reading this section.

We now look at the problem of binary addition as a Boolean function.
We will do an example based on addition of 3 digit binary numbers.

Suppose we have two 3 digit numbers A = 101 and B = 001. Notice
that although B is just 1, we pad two leading 0’s to make it a three digit
number, because the hardware, that is the circuitry, is fixed when the adder
is designed and cannot be changed.

Recall that for numbers in binary we call the digits bits. Now we say
the bits of A are a2a1a0 which means for this example a2 = 1, a1 = 0 and
a0 = 0. Similarly, we identify the bits b2b1b0 of the number B so that for
this example b2 = 0, b1 = 0 and b0 = 1.

The addition A + B can be expressed as

CHAPTER 3. LOGIC AND CIRCUITS 101

P

NO
T

Q

NO
T

R

NO
T

AND

AND

AND

Fa

Fb

Fc

O
R

F

AND

O
R

G

Fd

Figure 3.5: Circuit to compute F andG, constructed using the sum of prod-
ucts method. Connection of the inputs to Fb, Fc and Fd gates is left as an
exercise.

102 3.4. BINARY ADDITION USING LOGIC AND CIRCUITS

101
+001
110

or using the digit notation, the general form looks like

a2a1a0

+ b2b1b0

s2s1s0

where s2s1s0 are the digits of the sum S. Notice that we seem to assume
there will only be three bits in the sum. If the result requires 4 bits, then as
discussed in the previous chapter there will be an overflow condition.

Now, in general let us consider adding the two digits a + b which will
produce the sum digit s. We write the binary addition table as follows,
temporarily ignoring the fact that the last case, 1 + 1, produces a carry of 1.

a b s

0 0 0
0 1 1
1 0 1
1 1 0

This of course is nothing more than a truth table for s as a function of
the inputs a and b. So, we could write a Boolean function at this point.
However, we need to worry about those carries.

When adding A + B, adding any pair of digits will produce an output
carry of either 0 or 1. We can expand the preceding truth table to include
this carry as the function c.

a b s c

0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

But now when we want to add a1 + b1 to get the correct value for s1 we
must also consider the carry from the addition of a0 + b0. A similar issue
arises when adding a2 + b2.

We thus need to consider for each bit position the value of the carry
coming into that position from the preceding position. The only exception

CHAPTER 3. LOGIC AND CIRCUITS 103

to this is for the addition a0 + b0. In order to make every column similar, we
simply assume that there is a carry into the 0th as well, but that it alway
has the value 0.

With this in mind, we rewrite the general form of the addition as follows

c2c1c0

+ a2a1a0

+ b2b1b0

s2s1s0

where ci is the carry out from the preceding column when i > 0 and c0 = 0.
We now need our bit-wise addition function to have three inputs, which

we use cin as the carry in from the preceding column, and two outputs s and
cout which is the carry out to be added to the next column. We notice that
for our 3 digit example, if c2 = 1 then this means there is an overflow.

Table 3.3 gives the functions for adding two bits and a carry and pro-
ducing the two outputs we desire.

Inputs Outputs
a b cin s cout

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Table 3.3: Addition Functions for Sum (s) and Carry

One of the exercises asks you to complete the sum of products circuit
to compute the sum and carry based on Table 3.3. Note that this table is
called a full adder definition because it includes the carry. Many texts and
online sources refer to a half adder. This simply means the logic circuit is
designed for adding two digits, but not adding the carry cin. We previously
saw the truth table for that above.

Let us now abstract the addition of one column by representing it as a box
with inputs for each digit and carry. We illustrate this in figure 3.6. Each

104 3.5. CHAPTER 3 QUESTIONS

box is a copy of a completed circuit such as the one in figure 3.7. Notice

ADDER

a0 b0 c0

s0

ADDERADDER

a1a2 b1b2 c1c2

s1s2

Figure 3.6: Ripple Adder for Two 3-bit Numbers.

that the carry out from one column is just the carry in to the next column.
Thus the computation must proceed from right to left. If the last carry out
is set to 1, then overflow has occurred on this 3-bit adder. The name “ripple
adder” comes from the observation that the computation ripples from right
to left, as each ADDER must wait for the carry from the preceding unit
before it can complete the next addition.

Although this circuit illustrates that logic is sufficient to perform the
computation of addition, it is not the construction used in practice. In real
computers we may want to use 64 or even 128 bit adders. Since each gate
will have some delay in its operation, for computations on large numbers the
delay as the carries ripple from the right to the left is unacceptable, as it
would slow down the computer. Thus, in practice more complex but faster
circuits will typically be designed to do addition.

3.5 Chapter 3 Questions

1. Use BeeperBot to simulate the NOT function. Let one cell represent
the input, another the output. You let 0 be represented by 0 beepers
and 1 be represented by 1 beeper. Now encode the following algorithm

CHAPTER 3. LOGIC AND CIRCUITS 105

If there is no beeper on the input cell, then
Put a beeper on the output cell

Else
Do nothing

2. Using a similar representation as above, write BeeperBot code to sim-
ulate the AND function.

3. Using a similar representation as above, write BeeperBot code to sim-
ulate the OR function.

4. Show the circuit for the expression Q ∨ Q. What function does it
compute?

5. Show how each of the sixteen 2-input functions can be built using only
AND, OR and NOT gates. HINT: to show this, you should show
that for each of the 2-input functions there is a circuit consisting of
only these gates that is logically equivalent. Note this shows that only
these gates are required for any 2-input function.

6. Show that NOT(NOT(P)) = P.

7. De Morgan’s laws
Show the following two statements are correct, that is the left and right
sides of each are logically equivalent.

(a) P ∨Q = P ∧Q

(b) P ∧Q = P ∨Q

8. Show how the AND, OR and NOT gates can be built using only the
NAND gate. HINT: Use the previous two exercises.

Note combined with the previous exercise, we see that NAND gates
are sufficient for computing all two input functions. However, such a
construction might not be the most efficient.

9. Consider the diagram in figure 3.5. Now suppose we had more func-
tions defined on these three inputs that we wanted to compute simul-
taneously with F and G. What is the maximum number of AND gates
we would ever need? Explain.

106 3.5. CHAPTER 3 QUESTIONS

10. Table 3.3 defines the two functions required for binary addition. Com-
plete the sum of products circuit in figure 3.7 for addition, where
c = Cin and c′ = Cout in the figure.

N
O
T

AND

AND

AND

AND

N
O
T

N
O
T

a b c

(~a.~b.c)

(~a.b.~c)

(a.~b.~c)

(a.b.c)

O
R

s

AND

AND

AND

(~a.b.c)

(a.~b.c)

(a.b.~c)

O
R

c'

Figure 3.7: The Full Binary Adder: Complete as Exercise.

Chapter 4

Program Exploration Tool
(PET)

In this chapter we discuss the language used in the Program Exploration
Tool (PET), and briefly the model underlying it and how it relates to typ-
ical computer architecture. PET uses a language similar to many modern
languages, but has the advantage of a simpler syntax, and it displays the
computation in a step by step manner that should help in understanding
what is going on.

In chapter 2 we presented summary of learning to program, in particular
as applied to BeeperBot. Here is an amended version

Learning the language: For BeeperBot the language was very elemen-
tary, with little built-in power. The language of the Program Explo-
ration Tool is a little more complex, and thus a bit more difficult to
learn.

Learning to use the language to do “mechanical” tasks: For BB we
showed how to manipulate the robot and how to move beepers in the
world and between bags. With the Program Exploration Tool you will
learn how to assign, copy and do arithmetic on variables, for example.

Learning how to represent and model real world problems: In pre-
vious chapters we discussed representing and displaying text, and the
more difficult task of representing numbers and doing elementary arith-
metic. The Program Exploration Tool uses binary representation for

107

108 4.1. ARCHITECTURE

integers. But the difficult task is learning how to put these pieces
together to solve complex real world problems.

One of the struggles of modern computing science is the development
of better and more powerful languages. In general, languages have been
developed that try to minimize the effort of steps 2 and even 3, by building
more into the language itself. This has the side effect of making the languages
themselves ever more difficult to learn and use. Achieving the right balance
is difficult, and the appropriate choice of language for any problem depends
on the problem. For many specialized tasks, such as statistical analysis,
or scripting in game programs, or mathematical programming specialized
languages have been developed. But many general purpose languages such
as JAVA and C++ have also been developed, and the result is there are
many programming languages.1

The Program Exploration Tool uses essentially a simplified subset of the
language C. But before we look at the language, we need to add a 0th step to
learning to program, and that is we need to understand the computational
model over which the language operates. And before we do that, we will look
very superficially at the general architecture that is used in today’s digital
computers. This will serve two purposes, one to acquaint you with how
modern computers work, and two to provide an intuition for the somewhat
more abstract model of computation that PET can be seen to work on.

4.1 Architecture

Computer architecture, a term coined by Fred Brooks back in 1962, is a study
of how to design computer systems. There are several levels of design. At the
highest level is the system level. It involves how the different components
are connected. These components include: memory, CPU, which stands
for Central Processing Unit, and buses, which connect different components
together. The CPU is the brain of the whole system, without which there is
no computer.

Each type of CPU speaks its own language. For example, the CPU used
in a PlayStation is a cell processor from IBM and it speaks a different lan-
guage than the CPU that you have on your PC or laptop. The language used
by a CPU is commonly called the Instruction Set Architecture and forms an

1http://en.wikipedia.org/wiki/List_of_programming_languages

http://en.wikipedia.org/wiki/List_of_programming_languages

CHAPTER 4. PROGRAM EXPLORATION TOOL (PET) 109

interface between the internal hardware of the CPU and the external world.
This is crudely analogous to languages we use as humans in communication,
which form an interface between our own internal world and the external
environment. The design of such a language or interface forms the middle
level of the architecture.

The last level is commonly called the computer organization, which de-
scribes how the hardware can support the implementation of the instruction
set of the CPU.

We should note that the instruction set languages mentioned consist of
very elementary operations, and that the higher level languages we typically
use in programming allow complex operations each of which require many
of these elementary operations to perform.

4.1.1 The von Neumann architecture

System Bus

Main Memory

Input

Output

CPU

ALU

Control

Figure 4.1: von Neumann Architecture

Figure 4.1 illustrates the basic design configuration adopted by all con-
temporary computer systems. There are variations of this configuration but
the general principle is the same.

When you look at your laptop, you probably think “computer”. What
you are actually looking at is a computing system. You will see a screen,

110 4.2. SIMPLIFIED MODEL UNDERLYING PET

where results of computations are output for you to view. You may attach
a printer, which also takes output and presents it in a human viewable form.

You will see a keyboard which takes what you type and inputs it to the
computer. You may also plug in a camera to input photos you have taken,
or a microphone to input sounds.

You may input data, such as music or games, from a DVD or CD, and
of course you may also be connected to the Internet from which you can
download (i.e. input) more data. You may attach various other media, such
as external hard drives, and flash memories etc. Of course, you can also
output data to these devices, so they are legitimately seen as both input and
output devices. To be fair, some screens are touch screens and so also act
as input devices and you sometimes can move data onto the memory of a
camera from your computer, so they may occasionally also be considered as
output devices.

But where is all this I/O (input/output) going? Well, it is going to the
main memory, or to the internal hard drive, which for our purposes is just
a slower but bigger and more persistent extension to the main memory. In
our simplistic model, we suppose that it all is processed through the CPU
(central processing unit), although some transfers may be handled by special
device handlers.

The system bus pictured in figure 4.1 is the set of connections that acts
as the principle connection between the devices, memory and the CPU. You
can see vestiges of this in the various holes in the sides of your laptop which
allow you to plug in cables, thereby connecting the bus to other devices.

Memory is best thought of as a very long sequence of words, as illustrated
in figure 4.2. As we mentioned previously each word has some fixed number
of bits, 4 in the illustration, but typically 32 or 64. Each memory cell has
a unique numeric address to identify it. In the illustration addresses are
given in base ten for illustration purposes to separate them from the data
(in reality they are also specified using binary in the machine).

We will discuss somewhat more the internals of the CPU and how pro-
grams are processed in section 4.2.

4.2 Simplified Model Underlying PET

For BeeperBot, the computational model is fairly simple and transparent.
BB operates in a two dimensional world established on a rectangular grid.

CHAPTER 4. PROGRAM EXPLORATION TOOL (PET) 111

Grid cells may contain any non-negative number of beepers. BB can detect
whether or not the cell it is in contains beepers, and has some local memory
capacity in terms of 10 bags that may hold any number of beepers. The
programming language has two classes of statements; those that interact
with the world or the bags in some manner, and those that control the
execution of the program such as if and while.

PET operates on a computational model that is more similar to a modern
computer. To understand it, we will extract the CPU and memory units from
figure 4.1 and expand them somewhat in figure 4.2. But be aware, that PET
like any real programming language still allows keyboard input and produces
output, so the I/O units are implied even if not shown in figure 4.2.

1010

Memory

Cells
0
1
2
3
4
5
6

3
Address

1010
Data

ALU

PC
Control

IR

CPU

Registers
R0

R1

R2

R3

Figure 4.2: Random Access Memory (RAM) model

First we will give a brief explanation of each of the labels in the figure.
To find out more, look in the “links.html” file associated with these notes.

As already mentioned CPU means the central processing unit. It is the
heart of the computer, and the point at which computation occurs. Within
the the CPU, the ALU, or Arithmetic Logic Unit, contains the circuits that
implement operations such as addition, subtraction and multiplication, as
well as logical operations. This then is where the circuits from the previous

112 4.2. SIMPLIFIED MODEL UNDERLYING PET

chapter fit in.
The control unit is where the actual machine code is taken from memory

and set up for execution. The program counter (PC) indicates the address
in memory of the next instruction. The actual instruction is copied from
memory to the instruction register (IR).

A CPU may contain an additional set of registers, which are on-chip very
fast memory cells. Because they are part of the CPU, they can be accessed
directly by the ALU without going through the bus to the memory interface,
and thus operations on them are very fast. Our fantasy processor has four
registers, labeled R0 through R3.

The memory unit contains cells, each of which can be individually ad-
dressed. Here we just assume a cell is one word. In addition, our simplified
model has two special registers. One is the memory address register and the
other is the data register.

So how does a machine language program work? First the language itself
consists of instructions encoded in binary that can be directly executed by
the CPU. A program will be located starting at some address in memory.
This address will be loaded into the PC. Then the control unit begins to
repeat the following sequence of operations, known as the fetch, decode,
execute cycle.

1. Fetch an instruction. The address contained in the PC is sent to the
address register in memory along with a signal that the current data
is wanted. The memory module loads the data from the addressed cell
into the data register. The control then puts this into the instruction
register. The PC is incremented to indicate where the next instruction
is.

2. Decode the instruction. Since an instruction consists of different parts,
called fields, each field carries a particular instruction for the CPU to
perform. To obtain each field is to decode the instruction.

3. Execute the instruction. If the instruction was arithmetic or logical,
then the ALU performs the instruction. If the instruction was a pro-
gramming branch instruction (i.e. an instruction to continue execution
at a different part of the program) then the PC may be changed. If
the instruction was a load instruction, then data will be copied from
some memory location to a register. If the instruction was a store
instruction, then data will be copied from a register to memory.

CHAPTER 4. PROGRAM EXPLORATION TOOL (PET) 113

Different CPUs will implement different instruction sets, and so there is
a significant variety in machine level languages. But in general there will be
something akin to the following.

Suppose we want to add two numbers in memory and store the result in
a third cell. A typical chip design might have instructions such as

• LOAD R0, Addr

• STORE R2, Addr

• ADD R0,R1,R2

The first of these copies a number from the memory cell at address Addr into
the register R0. The second copies the value in register R2 to the memory
cell at address Addr and the third adds the numbers in the first two registers
and puts the result into the third. Of course these instructions will also work
on different registers. In our example we have R0, R1, R2 and R3.

For purposes of illustration, let us say that the machine code for LOAD
is 0101, STORE is 1100, and ADD is 1001. Since there are 4 registers, the
next 2 bits could be the register address, and the remaining bits would be the
memory address. Say the first memory is 1001, and for sake of illustration
we have 10 bit words. Then the instruction LOAD R0, 1001 in binary would
be 0101001001. There would be similar patterns for other instructions.

The complete program to do the addition might be

Memory
Mnemonic Binary Code Address

LOAD R0, 1001 0101001001 0011
LOAD R1, 1010 0101011010 0100
ADD R0, R1, R3 1001000111 0101
STORE R3, 1011 1100111011 0110

... ... 0111

... ... 1000
first value 210 0000000010 1001
2nd value 310 0000000011 1010

answer ... 1011

Note that each line occupies a word of memory. In this example, we
show the program stored at memory locations (or addresses) 0011 through
0110. To execute it, the PC would be initialized to 0011. We also show the

114 4.2. SIMPLIFIED MODEL UNDERLYING PET

memory where the two values, 2 and 3 base ten, are stored, and indicate
where the result would go when computed. The dots indicate that currently
we do not care what binary values are stored in those locations.

We re-emphasize the take away lesson from this example; the data stored
in memory is just a bunch of binary sequences. Sometimes they may be used
as code to be executed and sometimes they are data to be used in instruc-
tions. There are many tedious details we have left out of this discussion,
such as how to ensure that the program does not try to execute memory
cells we intend to be used as data.

So, how does this relate to a PET program? Well first, like any high level
language, PET is designed to more human friendly than the machine level
code. It is also designed to have the many tedious details, such as ensuring
data and executable code are separated, are taken care of automatically
without the human programmer having to worry about them,

However, the PET instructions cannot be executed directly by the com-
puter chip. Instead, each instruction in a PET program must be translated
to a set of machine instructions. Suppose we have the following PET pro-
gram, where the dots indicate other code (that assigns values to the variables
B and C e.g.)

int A, B, C
define main {

....
A = B + C

}

First, note that A, B and C are variables and this means that they are merely
labels that will be assigned addresses by the PET program when it runs or
compiles (addresses can be assigned at compile time or run time depending
on the system). Suppose B is assigned the address 1001, C is assigned the
address 1010 and C is assigned the address 1011. Then the line A = B + C
will result in a machine level code sequence just like the one we had above.

The key lessons with respect to PET

• Every PET line results in a few lines of machine level code

• Variables in PET correspond to memory cells; variable names are sim-
ply labels for memory addresses

• All of the machine code is carried out step by step in the CPU

CHAPTER 4. PROGRAM EXPLORATION TOOL (PET) 115

And finally, every logical and arithmetic function, all of memory, all of the
control counters and all the registers are built using Boolean gates and cir-
cuits.

4.3 PET Language

It is time to begin the first step of learning a new programming language as
listed in the introduction, namely to consider the features the language or
tool provides. In this case you are lucky, because the instructors have chosen
to provide you with a fairly simple to learn programming language which is
also executed inside a separate user interface panel.

Before beginning, you can download the PET program from this site.

http://www.cs.ualberta.ca/resources-services/teaching-resources

4.3.1 Interface

Figure 4.3 identifies some of the main features of the PET interface. These
features are self-explanatory or will be referenced in subsequent sections, so
we provide no overview here.

4.3.2 Comments

Just as in BeeperBot, a comment starts with the symbol # and continues
to the end of the line. All text in a comment is ignored when the program
is run. A side effect of the simplicity of PET is that you cannot get the
program to print a # symbol.

It is a good idea to get in the habit of commenting your code. Remember,
a TA has to understand and mark your code. Anything you can do to help
the TA understand what you are trying to do is likely to increase your mark.

4.3.3 Variables

A variable is a named collection of memory cells. In PET, there are two
classes of variables, simple variables and compound variables.

http://www.cs.ualberta.ca/resources-services/teaching-resources

116 4.3. PET LANGUAGE

Program
Code

Break
Point Set

Line
Counter Set

Line Counter
Stats

Memory Display
Simple Variables

Memory Display
Array Variables

Output
Monitor Input Area

Run Controls

Tool BarMenus

RunningError
Messages

Figure 4.3: PET Interface

CHAPTER 4. PROGRAM EXPLORATION TOOL (PET) 117

Simple Variables

Simple variables hold only one value at any time. It is easiest to think of
this value as occupying one memory cell, although this may not be strictly
true with respect to the underlying machine.

From the course so far, you should realize that the values that any vari-
able holds are sequences of binary digits. But we do not usually want to
work with values at this level. So PET provides built-in data types. For
our purposes, a data type expresses what kind of information the bits are
supposed to represent.

The three types of simple variables are

int The variable stores an integer, which may be positive or negative. The
value will be displayed in base ten format, both in the memory viewing
pane, and in the input and output panes.

bool The variable has only two values, representing false or true. These are
the only values that are displayed.

string The variable can only be assigned a string of characters enclosed in
double quotes.

Compound Variables: Arrays

Compound variables are, as the name suggests, collections of simple vari-
ables under one name. Each part of the variable may be assigned or copied
individually. In PET, the only such variable is an array of integers.

array The variable will be an array of integers, with the number of integers
in the array specified by [n], where n is an integer.

Declaration and Initialization

Here are the rules for declaring variables in PET

• All variable declarations must precede the first define statement.

• Variable names may only contain upper or lower case letters and the
under bar character “ ”.

• Declarations start with one of the key words int, bool, string, array
and are followed by one or more variable names separated by commas.

118 4.3. PET LANGUAGE

• int, bool and string variables may be given initial values using the
symbol “=”. Array variables can only be initialized by default (to 0).

By default, all int variables, including arrays, are initialized to the value
zero, all bool variables are initialized to false and all string variables are
initialized to the null string, designated by “ ”. Please note: assigning default
values is a feature of PET which is not found in most languages. It’s good
practice to get into the habit of initializing your variables and not depend
on a default setting.

You can override the default initializations for int, bool and string
variables by using the assignment operator “=” followed by a value of the
appropriate type.

The following code illustrates precisely all the modes declaring variables,
and initializing them to either default or preferred values. If you run this
code in PET, you can examine the effects of initialization in the memory
display panes of the interface. The code is in the file called declarations.txt
in the sample programs.

declarations with default initialization
int a, b, counter
bool flag
string name

declarations with user initialization
int N = 10, M = N + 5
bool another_flag = true
string greeting = "Hello World"

declaration of array using initialized N
array my_array[N]
array array_b[M]

define main {

}

There is a special command for filling an array with random numbers
called fillarray. It takes the name of the array as an argument. For example,

CHAPTER 4. PROGRAM EXPLORATION TOOL (PET) 119

we could fill the arrays in the previous code by changing the define main
routine as follows

define main {
fillarray my_array
fillarray array_b

}

The numbers inserted are in the range [1 . . . 10× size] where size is the size
of the array. Thus, my array would have numbers in the range [1 . . . 100]
and array b would have numbers in the range [1 . . . 150].

This command is used to create random arrays for sorting or other pur-
poses, since input of a larger array is very time consuming in PET.

We will find that filllarray is also very handy for generating random
numbers for certain games we will be programming.

4.3.4 Expressions and Assignment

First let us consider simple variables. In code a statement such as

a = b

is called an assignment statement, where “=” is the assignment operator.
The effect of this statement is to copy the value of the variable b into variable
a. The value of b is not altered.

To work correctly, a and b must be of the same type, that is either both
int or both bool or both string.

For array variables, you must assign each element of the array indepen-
dently. To select an element you use an integer called the index. If the
array was declared with N elements, then the set of indices are 0, . . . N − 1.
Since the elements are integers, you can assign only values of type int to the
elements of the array. Here are some examples, where you can assume a,
b, c are integers and X is an array with 10 elements (indexed 0 . . . 9).

X[1] = 5
X[5] = a
c = X[b]
X[c] = X[b]

120 4.3. PET LANGUAGE

Note that when a variable of type int is used to index an array as in some
of these examples, an error will occur if the index is negative or greater than
or equal to the array size N.

Variables of type bool can only have the values true or false. We can
also copy Boolean values using assignment.

String variables can be assigned any sequence of printable characters,
except # and some control characters, using an assignment statement with
the string on the right hand side contained in double quotes. String variables
can also be copied using assignment.

If all we could do is assign or copy variables, our language would be of
limited use. However, we can also evaluate expressions.

There are two types of expressions available in PET, arithmetic expres-
sions and Boolean expressions.

Arithmetic Expressions

Arithmetic expressions in PET can be created with the arithmetic operators
+, *, -, / and operands that are integers, integer variables or integer

array elements. Also, you can use () to indicate how the expression is to
be evaluated. Here are some examples, where all non-array variables are
assumed to be of type int.

a = 3*5
b = (a + 5)*7
Y[3] = (X[5] + 9) - Y[2]
X[a] = X[a] + X[a]*2 + 1
c = 7/3

Consider the second last of these expressions. Suppose the a’th element of X,
X[a] has value 5 before this statement is executed. Then after it executes
the value of X[a] will be 16. Note that the right hand side is completely
evaluated before the value of X[a] is changed.

The other example of note is the last line. We have only integer arith-
metic in PET, and so in this division the fraction is lost. After executing
this line, the variable c would have the value 2.

Boolean Expressions

So far we have been using the terms Boolean statement to mean a statement
that has one of two values,false or true, (or 0 or 1). We have so far been

CHAPTER 4. PROGRAM EXPLORATION TOOL (PET) 121

rather loose in our terminology, but now must be a bit more specific.
A Boolean expression in PET is an expression that evaluates to either

false or true. The Boolean operators used in PET come in two flavors, logical
operators and comparison operators.

Logical operators These are and, or and not. The operands that these
operate on must evaluate to one of the Boolean values false or true.

Comparison Operators These are

• == meaning “is equal to”. The operands of this can be of type
int, bool or string, but both operands must be of the same type.

• <> meaning “is not equal to”. The operands of this can be of
type int, bool or string, but both operands must be of the same
type.

• >, >=, <, <= meaning respectively “greater than”, “greater or
equal”, “less than” and “less or equal”. These operators can only
be applied to operands of type int.

These operators can be combined into compound expressions such as

(a > 10) and (b == 3 * a)

which will be true for example if a is 11 and b is 33.
You should also note that for Boolean variables “x == y” is not the same

as “x and y”. If you do not understand this, write out the truth tables for
each of these operators.

Here is a sample program called expression.txt that is available in the
sample programs illustrating construction of various expressions. You should
run this program step by step in PET and observe what the result of each
assignment is.

ILLUSTRATION OF EXPRESSIONS, ASSIGNMENT
STEP THROUGH THIS PROGRAM IN STEP MODE
AND AFTER EACH STEP OBSERVE THE VALUES THAT CHANGED
MAKE SURE YOU UNDERSTAND EACH RESULT

some ints
int a, b, c

122 4.3. PET LANGUAGE

Boolean values
bool bx, by, bz, bw, bv, bu

strings
string sn
string sm
string sp

declaration of array using initialized N
int N = 10
array X[N]

define main {

assign some values to ints
a = 5
b = 6

assign some values to bools
bx = true
by = false

assign strings
sn = "Yes"
sm = "yes"
sp = "yes"

arithmetic expressions
c = (a + b) / 3

X[a] = (c * (b+1)) / (2+5)

Boolean expressions
using ony Boolean variables

bz = bx and not by

asking Boolean questions about integers
bw = (c+2) >= a

CHAPTER 4. PROGRAM EXPLORATION TOOL (PET) 123

asking are two strings equal
bv = sn == sm

again -- why is bu true and bv false?
hint: capital Y
bu = sm == sp

compund question about arithmetic values
bx = (a < 5) and (3 == X[5])

maybe you want to ask is a == 5 or 3?
wrong way
by = a == 5 or 3
right way
by = (a == 5) or (a == 3)

the following will cause an error
if it is uncommented - why?
bx = bx and not a < 5

the following is okay - why?
bx = bx and not (a < 5)

}

4.3.5 Control Statements and Subroutines

Control statements are PET commands that cause the execution of the
code to change from the normal “execute the next line” mode. In PET there
are three control statements: (i) if . . . else, (ii) while and (iii) call. The
first two are conditional instructions, and the third calls a subroutine.

A conditional in PET differs from BeeperBot in that it can be any
Boolean expression or a variable of type bool. For example, the Boolean
expressions in the preceding section can be used as the conditional in any if
or while statement.

Here is a short description of these statements.

if . . . else This looks very much like the if . . . else in BeeperBot, including

124 4.3. PET LANGUAGE

that the else part is optional.

if (conditional) {
. . .

} else {
. . .

}

while This looks very much like the while in BeeperBot.

while (conditional) {
. . .

}

call In BeeperBot a subroutine is called by simply putting its name as a
program line. In PET, you must use the keyword call. As in Beeper-
Bot, subroutines are defined using the keyword define. Here is an
example

define my sub {
writeline “Hello World”

}

define main {
call my sub

}

Compared to languages such as C or Java, PET subroutines are very
primitive. They do not provide parameters, or local declaration of variables
etc. This gives us the opportunity to discuss these ideas from the “wouldn’t
it be nice. . . ” perspective.

4.3.6 Input and Output

There are two output statements, write and writeline. Either takes a
sequence of variables or strings in quotes separated by spaces and prints
these arguments on the same line usually separated by a space. (A bug? Try
the program below to see space not always appended.) A series of writes

CHAPTER 4. PROGRAM EXPLORATION TOOL (PET) 125

will continue adding to the same line of output, while writeline starts a
new line after printing its arguments. You can only output arrays element
by element using indices. All output goes to the pane named “Terminal”
and labeled “Output Display” in figure 4.3.

There is one input statement, read, which can only be used with the
keyboard. It takes exactly one argument of type int, bool, string or one
indexed element of an array. Keyboard input is entered in the pane labeled
”Input area” in figure 4.3. Note: you must press the “enter” or “return” key
after entering your value to complete a read command.

The following program is called readwrite.txt and can be found in the
sample programs.

simple input and output of bool, string
and a small array

bool x
string name
int i

int N = 10
array A[N]

define main {
writeline "Enter true or false"
read x
writeline "you entered " x
writeline "Enter some text "
read name
writeline "You entered " name
i = 0
while (i < N) {

read A[i]
i = i+1

}

for variety, we print the
array in reverse order
i = N-1

126 4.3. PET LANGUAGE

while (i >= 0) {
writeline "Element " i " is " A[i]
i = i-1

}
}

4.3.7 Controlling and Monitoring Code Execution

In the area labeled “Run Controls” in figure 4.3 there are three buttons and
a speed control. Run starts the process executing at the indicated speed,
while Step advances the process one program step on each click. Speeds can
be set from 0 to 5, where at speed 5 the tracing is turned off, and, for most
programs you will write, the execution will appear to be instantaneous. Stop
terminates the process. Note that the process must be terminated before you
can edit your code.

Two additional features of the PET interface are very useful in debugging
and analyzing your programs. These are indicated in figure 4.3 by the labels
“Break Point Set” and “Line Counter Set”. To activate these, select the line
number of the code line you want the effect to take place on, and right click
(control-click if you have a one button mouse). You can then toggle on or
off the intended action.

If you select and click on “Toggle Statistics Line” the line will have a
green highlight. When your program runs it will count how many times that
particular line executes. This number is reported in the pane titled “Run
Time Stats” and labeled as “Line Counter Stats” in figure 4.3. Selecting the
same toggle a second time will turn this statistic off. You may turn the stats
on for any set of lines, and they will all be reported. By default, the total
count of all program steps is always displayed in this window.

If you select and click on the “Toggle Breakpoint” then the line number
will be flagged with a red highlight. When you run the program it will halt
whenever it reaches this line. You can change the speed if you wish. You can
continue the run by hitting Run, or you can continue the process one step at
a time by using the Step button. This feature is very useful for debugging.
You may have a program that makes many steps before hitting a runtime
error. If you set a breakpoint appropriately, you can let the program run at
full speed until it hits the likely problem spot, and then step it one step at
a time to see exactly what goes wrong.

CHAPTER 4. PROGRAM EXPLORATION TOOL (PET) 127

4.3.8 Saving and Loading Source Code

PET provides for saving and loading programs using the File menu or the
buttons located just under it. The interface is fairly standard, and docu-
mented in the built in help file.

4.4 PET Questions

These questions are designed to acquaint you with the PET language, and
test your understanding.

Many of the questions are trace questions. Resist the urge to simply find
the programs in the sample program sets and run them to find the answers.
Instead you should run the programs “on paper” by tracing the variables
and how they change. Only after you have obtained what you think is the
correct answer should you verify it by running PET.

Remember, on the exam you will not have PET, and if you rob yourself
of the chance to learn by taking shortcuts to get the answer, then you lose
by it.

Most people will draw some sort of open ended table, with a column or
row for each variable, then trace the effect on the variables as each statement
is executed. The exact format of your trace is not important, as long as it
makes it clear to you what is happening. And when you get the wrong
answer, it is important that you have a trace clear enough that you can
determine where you went wrong when you compare your results to those
obtained from stepping through the program using PET.

1. Suppose a and b are declared as int and flag is declared as bool.
Which of the following PET statements will assign true to flag re-
gardless of the integer values assigned to a and b? Which will always
assign false? Which if any are sometimes true and sometimes false?
Note for integers a and b there only three cases; either a == b or a < b
or a > b. Use this to establish truth tables to answer the following.

(a) flag = (a == b) == ((a < b) or (a > b))

(b) flag = (not (a == b)) == ((a < b) or (a > b))

(c) flag = (a == b) == ((a <= b) and (a >= b))

(d) flag = (a <= b) == not (b < a)

128 4.4. PET QUESTIONS

Note: in PET “not (a == b)” can also be written as “a <> b”.

2. Will the following program halt? Explain its behavior in terms of how
integers are represented. How many bits are used?

int a, b
define main {

a = 1
b = 0
while (not (a == 0)) {

b = b + 1
a = a * 2
writeline a

}
}

3. Trace the following program and indicate what the contents of the
array A are. Check using PET.

int a

define second {
write "Hello "
a = a + 2
}

define first {
a = a * 3
call second
writeline "There!"

}

define main {
a = 1
call first
writeline "a = " a

}

4. Trace the following program and indicate what the contents of the
array A are. Check using PET.

CHAPTER 4. PROGRAM EXPLORATION TOOL (PET) 129

int i
int N = 10
array A[N]

define main {
i = 0
while (i < N) {

A[i] = N-1-i
i = i+1

}
i = 0
while (i < N) {

A[i] = A[A[i]]
i = i + 1

}
}

5. In the following there are 4 different target statements. You need to
find for each target a pair of integer values for a and b, that will result
in the output of the target. Do not forget that integers can be negative
or 0. If some targets are impossible, explain why.

int a, b, c
int i
bool flag

define main {
writeline "Enter integer value for a "
read a
writeline "Enter integer value for b "
read b

flag = a < b

c = a * b
writeline c

if (flag and (c < a)) {

130 4.4. PET QUESTIONS

writeline "TARGET One"
} else {

if (flag) {
writeline "TARGET Two"
} else {

if (c < a) {
writeline "TARGET Three"

} else {
writeline "TARGET Four"

}
}

}
}

6. Consider the following code and answer the three questions below.

int A, B

define main {
read A
B = 5

while (A < B) {

while (A < B) {

A = A * 2
B = B + 1

}

while (B < A) {

B = B * 2
A = A - 1

if (B > 10) {
B = 0

}

CHAPTER 4. PROGRAM EXPLORATION TOOL (PET) 131

}
}

write A B
}

(a) Assume the user enters 2. Trace the contents of A and B for every
change that is made and state what the output is when the write
statement is executed.

(b) Repeat the trace, but this time assume the user enters 3.

(c) What happens if the user enters 0?

7. Trace the following algorithm.

int N = 21, i, k
array tag[N]

define main {
i = 0

while (i < N) {
tag[i] = 0
i = i + 1

}

i = 2

while (i < N) {

if (tag[i] == 0) {

write i
k = i*2

while (k < N) {
tag[k] = 1
k = k + i

}

132 4.4. PET QUESTIONS

}

i = i + 1
}

}

(a) What is the output of this program?

(b) In general, what numbers will be printed by this program for any
given N?

This method is known as the Sieve of Eratosthenes

Chapter 5

Algorithms and PET

In this chapter we will use the Program Exploration Tool (PET) to develop
and explain some common algorithms. Typically we will start with some
problem, write some high level pseudo code, then translate that into PET
and debug and run it. By the end of this chapter you should have a grasp of
some of the elementary algorithm design and analysis issues that a typical
computing scientist would face.

5.1 What is an algorithm?

What exactly do we mean by the word algorithm? Here are some common
informal definitions

Encarta: A logical step-by-step procedure for solving a mathematical prob-
lem in a finite number of steps, often involving repetition of the same
basic operation.

Wikipedia: An algorithm is an effective method for solving a problem using
a finite sequence of instructions.

The Free Dictionary: A logical arithmetical or computational procedure
that if correctly applied ensures the solution of a problem.

Merriam-Webster: A procedure for solving a mathematical problem (as
of finding the greatest common divisor) in a finite number of steps that
frequently involves repetition of an operation; broadly : a step-by-step

133

134 5.1. WHAT IS AN ALGORITHM?

procedure for solving a problem or accomplishing some end especially
by a computer.

The Wikipedia and dictionary definitions are too vague for our purposes.
Here is a definition from a book on the theory of computation.

Church-Turing Thesis: Intuitive notion of algorithms equals Turing ma-
chine algorithms. (from M. Sipser, Introduction to the theory of com-
putation, Chapter 3.3).

The Church-Turing thesis provides a precise definition in terms of a Tur-
ing Machine. A Turing machine is a formal mathematical model of com-
putation which you can learn about from many sources, but is beyond the
scope of this course. The precise definition of algorithm as being equivalent
to a Turing machine program, as in the Church-Turing Thesis, is useful for
formal studies of computational theory. Other formal models of computation
can be substituted, since the thesis essentially claims that all sufficiently rich
models are computationally equivalent; that is, they can compute any func-
tion that a Turing machine can and vice versa. To be complete one needs
to prove this equivalence. For example, one might be able to prove that
BeeperBot with an infinite grid, and PET with unboundedly large arrays
are each computationally equivalent to Turing Machines. But this definition
is not very useful for our purposes.

One we sort of like: An algorithm is a finite, ordered set of executable
statements that defines a terminating process that solves some prob-
lem.

Why do we “sort of like” the last definition? Because it indicates what
we will look for when we ask you for an algorithm. Let us break down the
definition to explain each of its parts.

executable statements Statements can be thought of as statements sim-
ilar to a PET program, and executable means that we can easily trans-
late them into PET code that will execute.

finite set This just means that we cannot keep on adding statements to
the program for ever. We must have a bounded size program that
implements our algorithm.

CHAPTER 5. ALGORITHMS AND PET 135

Ordered This means that there is a default order in which the statements
should be executed, and of course we are again thinking of PET as the
executor.

defines a terminating process The execution of a program is called a
process. Most of the time we want a process to do some computation
and give us a result. This means it should eventually halt, or terminate
after producing an output.

solves some problem In some sense, any PET program that halts is an
algorithm that does something. But usually you will be given a specific
task to solve, and so a correct algorithm should solve all instances of
the problem.

Why do we not “fully like” this definition? Things like operating systems
(for example Windows XP, MAC OS X, Linux) are programs we want to keep
running, and not terminate. Often we abuse the term algorithm to include
such programs. Also this definition does not easily cover certain classes of
algorithms, such as parallel and nondeterministic algorithms. But for our
purposes these will not matter, since we do not cover these in this course.

5.1.1 Working definition of Algorithm for CMPUT 101

Do not worry too much about the “formal definitions”. If we are using
pseudo-code, a term used to mean informal algorithm description, then there
is little point in fixating on a formal definition of algorithm. Here is what
you need to keep in mind:

For purposes of this course, an algorithm will be a set of
steps that we can easily implement in a PET program that
solves some problem.

When we ask you to implement an algorithm we mean to write it using
PET and test it for correct operation. You should include meaningful and
helpful comments, to aid the TA in understanding your code. Uncommented
and unclear code will lose marks.

We will also use the term when solving problems using BeeperBot, or
other programming systems.

136 5.1. WHAT IS AN ALGORITHM?

Generality

A Problem is most often not a single instance, but a set of instances. So
when we say “solves some problem” we mean it should solve instances of a
certain type, not just one instance.

For example, when we discuss sorting, we don’t want an algorithm that
sorts one specific sequence, instead we want one which works on any array
of any size.

This is very important. Answers which only work on one input will
typically result in reduced grades.

5.1.2 Some Examples of Non-Algorithms

In this section we look at ideas that might be thought to be algorithms
but are not. We find that people often present things similar to these as
algorithms, without realizing that their description is too vague to be imple-
mented.

A non-algorithm to detect primes

Recall that a prime number is an integer bigger than one whose only divisors
are itself and 1. Some primes are 2, 3, 5, 7, 11, 13, 17, . . . and the list goes on
forever. We would like an algorithm that will take as input a positive integer,
and indicate whether or not it is prime. Here is an approach

int p
define main {

read p
if (p == 1) {

writeline “no”
} else {

if (p == 2) {
writeline “yes”

} else {
if (p == 3) {

writeline “yes”
. . . and so on and so on . . .

CHAPTER 5. ALGORITHMS AND PET 137

Since there are infinitely many primes this program is not finite, and so
can never be completed. It is not an algorithm.

Note if we only wanted to determine primality of integers less than some
fixed bound, say 1000, then we could write an algorithm in this way. The
issue here is that to be completely general, if we continue in this fashion we
have to write a never ending sequence of if statements, and that violates our
condition that there must be a finite set of statements.

Twenty Questions Game

There are many variations, but generally this two player game starts with
one player thinking of an item, and the other asking questions which can
be answered “yes” or “no”. For example the first question might be “Is it
alive?” This is sufficient to divide the universe into two parts, living things
and non-living things. For each of these outcomes, there will be another
question dividing the result and so on.

This concept is illustrated in figure 5.1.

All Things

Non-living
Things

Living Things

Is it Alive
YESNO

rocks, lakes,
planets,...

Houses,
cars, ...

Is it man
made

YESNO

plants,
bacteria, ..

mammals,
reptiles ...

Is it
animal

YESNO

Figure 5.1: The first two levels of a Twenty Questions Decision Tree

From the figure, we see that after two questions we have split the original
universe into 4 parts, and know our answer is in one of them. The diagram
is commonly called a decision tree. The top node we call the root and the
bottom nodes are the leaves. Computer scientists are notorious for their
upside down trees.

Each time we allow another level in the tree we double the number of
possible outcomes. So for k levels, we would have 2×2×2 . . .×2 k times, or

138 5.1. WHAT IS AN ALGORITHM?

2k possible items. With twenty levels, meaning that the player gets to ask
twenty questions in a row, the player should be able to distinguish between
220 or about 1,000,000 different answers. However, if you start to implement
this, you will quickly see that you need to think up 1 million questions in
advance. And if you really allow all the infinity of things that might be in
the universe, then you will need an infinite program.

So what is wrong? Generally, when people play this we do not start
with a fixed set of questions, but instead make them up as we go. We make
assumptions about what the host is thinking about, get hints from the host’s
reactions, and take into account other clues such as what we both can see
at the time, and results of previous games.

Despite much research effort, at this time we simply do not know how
to program a computer to do what children can do, that is make up reason-
able questions as we go along. Artificial intelligence lags far behind human
capability so far.

However, when we have a finite size universe, or have a simple way to
make up the questions, then this decision tree approach can be very powerful
indeed, as we shall see in the following sections.

Cooking Recipes

A favorite algorithm example of many text books is a cooking recipe. How-
ever, how do you write a program to “salt to taste”? Recipes in fact are full
of vague instructions that must be interpreted by the judgement of a human,
and for which we know of no reasonable way to write a program.

It may be possible to design algorithmic recipes that could be executed
using a robot in a setting where all the ingredients and the facilities layout
are precisely specified, but the general run of the mill recipe from your
grandma’s handwritten collection, cooked in an average home kitchen is
currently beyond our algorithmic capabilities.

5.1.3 Some Elementary Algorithms

An algorithm can be specified in many different ways or levels. For example,
it can be described in a natural language.

CHAPTER 5. ALGORITHMS AND PET 139

Celsius to Fahrenheit

Consider converting temperature from Centigrade to Fahrenheit. One way
is to say it in English:

Multiply Centigrade by 9 divided by 5 and then add 32 to the
result. Then you get the degree in Fahrenheit.

Because the conversion can be specified more mathematically, it can be
specified as:

F = C × 9/5 + 32

In the context of PET programming, this algorithm can also be specified
this way

int F, C
define main {
writeline "Enter Degrees C"
read C
F = (C* 9)/5 + 32
writeline "Degrees F to nearest degree " F

}

Finite Decision Trees

It is also possible to specify a decision tree algorithm in PET if you have
a finite set of items. Let us say you have to guess from the set of items {
ret hat, red coat, blue shirt, blue tie }. Clearly the first question should
distinguish the color of the object. Here is a program whose code can be
found in the file decision.txt in the sample programs.

decision tree program to distinguish between
red hat, red coat, blue shirt, blue tie
user must respond with yes or no
string answer
define main {
writeline "Is it red?"
read answer
if (answer == "yes") {

writeline "Is it a hat?"
read answer

140 5.2. CONVERSION ALGORITHMS

if (answer == "yes") {
writeline "It is a red hat"

} else {
writeline "It is a red coat"

}
} else { # not red, must be blue

writeline "Is it a shirt?"
read answer
if (answer == "yes") {

writeline "It is a blue shirt"
} else {

writeline "It is a blue tie"
}

}
}

Note that there are three questions in the program, but in any one run, only
two will be asked. If we had 2k items, and could divide them evenly on each
question, we would need 2k−1 questions in the program, but only k of them
would be asked in any one run.

Nevertheless, the program would be tedious to write, especially if say
k = 20.

5.2 Conversion Algorithms

We have seen in previous chapters that numbers in computers are stored in
a binary format. It is with some irony then that we now undertake to write
programs to convert numbers and print them in binary format, and to take
sequences of bits and print the base ten form of the number it represents.

The problem is that PET hides the details in the lower levels of im-
plementation from the user to a large extent. In fact, one of the goals of
modern languages is to provide better abstraction, and this means that more
of the low level implementation detail is hidden. But computing scientists,
and also mere programmers, should have an understanding of what is un-
derneath. Otherwise how are they to understand behavior such as that in
the questions in section 4.4?

This section will outline part of the programs, but leave part as exercises
for the student to complete.

CHAPTER 5. ALGORITHMS AND PET 141

5.2.1 Base Ten to Binary

PET normally takes integer input as a sequence of the digits 0, . . . , 9 repre-
senting the number in base ten. In this section we will take such a number
and output it as a standard binary number. Well, actually we will do part
of that and leave the remainder as exercises.

Recall the method of converting to binary; we repeatedly divide by 2
making the remainder the next bit. This is the method expressed as an
algorithm, modified to always compute a 32 bit representation.

input the number b
i = 0
while (i < 32) {

bit[i] = remainder of b divided by 2
b = b/2
i = i + 1

}

A few things need to be noted. First, we are storing the bits in an array
called bit. We will need to declare this to have size 32.

Second there is the statement “remainder of b divided by 2”. This does
not look like a PET statement, so is this really an algorithm?

Well, it is if we can turn this into PET code. Here is how we do this,
using a subroutine. If you forget your grade school arithmetic, see the file
Links.html.

First we present the subroutine we call quotient and remainder.

here are the variables needed in
the subroutine quotient_and_remainder.
int dividend # must be set before each call
int divisor # must be set before each call
int remainder # set by the subroutine
int quotient # set by the subroutine
int temp # for internal subroutine use

define quotient_and_remainder {
quotient = dividend / divisor
temp = quotient * divisor
remainder = dividend - temp

}

142 5.2. CONVERSION ALGORITHMS

Notice that this subroutine requires several variables. These variables
can be divided into three classes to help us distinguish their role.

Arguments As used, the variable dividend is an argument to this subrou-
tine. If we wanted to use quotient and remainder for other divisors,
then divisor would also be an argument. In general, the arguments
are the variables that act as inputs to the subroutine.

Results The results or return values as they are often called, are the values
the subroutine computes that the calling program needs. In this case,
we want the quotient and remainder.

Internal The internal variables are ones the subroutine needs to do its job,
but are not useful outside the subroutine. This subroutine uses the
variable temp. As used in the program below, we might also think
of divisor as internal, since it is never changed by the main program.
But in general usage, divisor should be an argument.

Now to use this subroutine we must assign values to the arguments before
each call, and copy the results where we need them after the call. With this
subroutine, we can write the above algorithm using PET as follows.

i = 0
while (i < N) {

dividend = copy # we provide the dividend
divisor = 2 # and divisor
call quotient_and_remainder # do the division by 2
copy = quotient # copy is now copy/2
bit[i] = remainder
i = i + 1 # ready for next bit

}

Of course we need to declare the array bit and other variables. Here is how
we declare the array.

int N = 32
array bit[N]

A complete program can be found in the file convert ten to binary.txt in the
PET examples. Note that the value N is set to 32, the number of bits we

CHAPTER 5. ALGORITHMS AND PET 143

need. copy is a copy the program makes of the input value, so we can re-use
the input value later. Notice that copy will be reduced to 0.

The exercises ask you to complete the program and modify it it in various
ways. You should complete those exercises relating to the program in the
file convert ten to binary before proceeding.

5.2.2 Binary to Base Ten

If we have a number stored as an array of bits as in the previous subsection,
then we can write an algorithm to perform the standard binary to base ten
conversion for earlier chapters as follows. First, we need to keep a value
for the number we are computing. We call this result. Then we need to
remember to compute a power of two as the amount to be multiplied by
the next digit. For this purpose we have a variable multiplier which we
initialize to 1. Each time we move to the next digit, we multiply this by 2.
Here is the algorithm in PET code.

multiplier = 1
i = 0
result = 0
while (i < N) {

result = result + bit[i] * multiplier
multiplier = multiplier * 2
i = i + 1

}

Now we only need to input the binary number. Unfortunately, PET does
not make this easy for us. We would like to simply type a string such as
“1101”, but PET does not provide any way to parse a string to see what the
individual characters are.

So, we are forced to input the bits one digit at a time. If you try this you
will quickly see that you do not want to enter all the leading zeroes to fill in
all 32 bits for numbers such 1101. So, we need to provide a way to stop the
input part of the process as soon as we have entered all the relevant digits.
To accomplish this, we allow the user to enter a number other than 0 or 1
to act as an “end of input” flag.

Here is the code to accomplish this. Note that this requires the user
to enter the digits from the right to the left, that is starting with the least

144 5.3. SEARCHING ALGORITHMS

significant.

i = 0
stop_flag = false
while ((not stop_flag) and (i < N)) {

writeline "enter bit " i
read bit[i]
if ((bit[i] < 0) or (bit[i] > 1)) {

stop_flag = true
bit[i] = 0 # fix the bad bit

}
i = i + 1 # ready for next bit

}

5.3 Searching Algorithms

We will take the approach of solving particular tasks, and then use the
solutions to identify certain types of algorithms such as sequential or binary
search.

5.3.1 Guess a Number Game

Our first problem is based on a much simplified version of the “twenty ques-
tions” game. In this game, the host thinks of a number in the range 1 . . . N ,
where N is agreed on in advance. For most of our examples we will let N be
100. The player must guess what the number is. We will write, or discuss
a variety of algorithms based on this problem, programming both the host
and the player as separate PET programs.

As with the twenty questions game, the player is only allowed to ask
restricted questions. For example, the player cannot ask a question such
as “what is the last digit of your number when written in base ten?”, be-
cause the answer could be any of 0, 1, 2, 3, . . . , 9. When N = 100, two such
questions would always determine the number! You might as well allow the
question “what is the number?” which does not make for a very interesting
game.

We might modify the previous question by asking “Is the last digit = 9,
when written in base ten?” This question can always be answered yes or
no, and so is a Boolean question, but we still have a problem. If we allow

CHAPTER 5. ALGORITHMS AND PET 145

such questions, we have no way to program the host using PET, because
PET does not provide any way to parse strings of words. But even if we had
access to a powerful modern programming language, allowing for arbitrary
questions of this sort would be very difficult. The reason is that this requires
a level of understanding of natural language that is far beyond this course,
and in fact no program even exists at the level of human intelligence.

So, we will restrict our game to allowing only a predefined type of ques-
tion. In all cases, the user1 will only ever be asked to enter either a number,
or one of the words“yes” or “no” or a boolean value of true or false, or one
of the three answers “Hi”, “Low” , or “Correct”.

5.3.2 Guess a Number Host

We will first build the host program. The first difficulty we encounter is how
to generate a random hidden value. Well, on PET nothing is hidden, so we
will have to pretend that the memory display is not visible.

We still have the issue of generating a number at random. If the game
is to be played with the hidden number between 1 and N , then we need to
generate such a number. Most systems provide some kind of pseudo-random
number generator, which is a subroutine that is built in to the language.
Starting with an integer, it generates a new integer each time it is called,
and the sequence looks random.

PET does not provide an explicit generator, but it does have the com-
mand fillarray. Given an array of size N , it fills the array with random
values in the range [1 . . . 10×N]. For example, the following code when ex-
ecuted creates an array of size 10, and fills it randomly with values between
1 and 100.

int hidden # the hidden value used by this routine
int N = 10 # hidden will be between 1 and N*10
array A[N] # use fillarray and take the 0th element
int limit = N*10 # upper limit to the range of guessing

define generate_hidden {
fillarray A
hidden = A[0]
writeline "My hidden number is between 1 and " limit

1We refer to the person running a program as the user whether she is host or player.

146 5.3. SEARCHING ALGORITHMS

}

The original purpose of this command was for use in creating arrays to
illustrate sorting algorithms, and we will use it for that purpose later. Note
that we use A[0] as the hidden number.

When building a program, it is a good idea to abstract out components as
subroutines as illustrated here. Now that we have this subroutine, it makes
sense to test it. We will need to declare a variable int i for the following.

define main {
test the hidden number by calling it ten times
i = 0
while (i < 10) {

call generate_hidden
print the hidden so the user can verify
writeline " Hidden = " hidden
i = i + 1

}
}

The complete test can be found in one of the on line codes. It may differ
slightly from that developed in class.

Sequential Search Support

When we search for something by simply trying every possibility in some
order, then we call it Sequential Search. For our game, the following would
be different sequential searches because they imply different orders. But
in each of them, in the worst case scenario, we would have to check all N
different numbers.

• Increasing: “Is it 1?”, “is it 2?”, “ is it 3?”, . . .

• Decreasing: “Is it 100?”, “is it 99?” . . .

• ‘Even, then Odd: “Is it 2?”, “is it 4?”, . . . “is it 1?”,“is it 3?” . . .

In the following we have a subroutine to play one game, where the user
types a number and the game will only respond correct or wrong. We say
this supports sequential search, because sequential search is the only realistic
way to play this game (assuming we could not cheat and look at the hidden

CHAPTER 5. ALGORITHMS AND PET 147

variable value in memory). The routine generate hidden which appears
above would need to be included as well.

GUESS A NUMBER SEQUENTIAL HOST

bool play_again # used to control multiple games
string response # to hold players reply to play again?

bool found # used in the routine play_one_game
to indicate when hidden has been found

int guess # to take users guesses as input

routine to play one game
define play_one_game {

call generate_hidden # start by hiding a number

found = false # the player has not found it yet
while (not found) { # keep searching until found

writeline "Enter your guess"
read guess

write "Your guess of "
write guess

if (not (guess == hidden)) { # still not it
writeline " is wrong."

} else {
writeline " is CORRECT!"
found = true # this will end the search loop

}
}

}

define main {
play_again = true # assume they want to play once at least

148 5.3. SEARCHING ALGORITHMS

while (play_again) {
call play_one_game

writeline "Play again(yes/no)?"
read response

if response is anything but "yes"
play_again will be false, and the game will stop.
play_again = (response == "yes")

}

}

The complete program can be found in the set of programs for this chapter.

Binary Search Support

Doing a sequential search takes a very long time. The game becomes more
interesting if the program provides a bit more information. Here is the idea.
Instead of just “correct” or “wrong”, the program will answer “Too high”
if the guess is bigger than the hidden value, “Too low” if the guess is lower
than the hidden value, and of course “Correct” when it is correct.

Implementation of this version of the host is left as an exercise. You only
need to modify the subroutine play one game, making the appropriate
tests, and giving the needed response. Note that you will have to insert
another if statement.

We say this now supports binary search. What do we mean by binary
search?

Well, the player using this host has significant advantage over one using
the version given above. Suppose as usual that N = 100. For the first guess,
the player can choose the number that splits the set of possible answers in
half. So, for the first guess, choose guess equal to 50. Now if the response
is “Too high” then the player knows the answer is in the range 1 and 49. If
the response is “Too low” then the player knows the answer is in the range
51 and 100. (And of course if “Correct” then the game is done).

In either of the first two cases, with one guess, the number of values that
the hidden number could be is reduced by about 1/2, from 100 to 49.

CHAPTER 5. ALGORITHMS AND PET 149

Now suppose the player is smart. She creates a mental image where
she keeps two fingers on a sequence of 100 numbers. After guessing 50,
according to the above knowledge, she can either move her right finger from
100 to 49, or she can move her left finger from 1 to 51. Suppose the second
case happens. The next guess should be in the middle again, or (100+51)/2
which after throwing away the fraction is 75. After the answer to this guess is
given, then at most 25 number will remain as possibilities, either the hidden
value will be known to be in the range 51 . . . 74 or in the range 76 . . . 100.

Using this method, each guess cuts the range approximately in 1/2. Let
us set up a little table, where on the left we keep the number of the guess
(i.e. k counts the number of guesses, not the number guessed) and on the
right approximately how many possibilities are left.

k Remaining
1 50
2 25
3 13
4 7
5 4
6 2
7 1

Note that after 7 guesses, there can be at most 1 number remaining in
the range of 100. So, one more guess and we have the answer. Notice that
if we multiply 2× 2× 2 . . .× 2 k times, or 2k then when k = 7 the value is
128, which is the smallest power of 2 larger than 100. We say that k is the
base 2 logarithm of 100.2

In general, for any N , this binary search procedure will need k = log2(N)
questions to get down to one possibility for the answer. Or equivalently, k
is the smallest integer such that 2k ≥ N . In computing science, we say that
binary search uses O(log N) (read as Big-Oh of Log N) time to do the search.

So for example, if we set the search range 1 . . . 1024, we would need at
most 10 questions to narrow the set down to one possibility. If we had N =
1000000 then we need about 20 questions and so on. Recall the discussion
in a previous chapter on the powers of 2.

This is an enormous savings in the number of questions we need.
2To be more mathematically precise k = dlog2(100)e, but we will ignore the ceiling

operation for this course.

150 5.3. SEARCHING ALGORITHMS

Of course, the player does not have to do a binary search with this host.
She can just ignore the benefits that are available, and do a sequential search.
But for N = 1000000, this could take a very long time.

5.3.3 Illustration of the Binary Search Decision Tree

In order to use binary search, we need to keep track of the current range
where we think the answer might lie, and then find middle as our guessing
point. If we think that the range starts at an integer low and ends at high
then we can designate the range by the notation [low . . . high]. We say
that low is a lower bound on the range, while high is an upper bound.
(We use lower bound and upper bound as names for the range in the player
program.)

Now to do the search, we compute the middle as middle = low+high
2 . The

middle value is our guess.
If the host answers “correct” then we are done. However, if the host

answers “too low” or “too high” then we must prepare to guess again. Before
doing this we must discover the new extent of the range.

Suppose the host answers “too high”. This means the hidden number is
less than our current upper bound, which we call here high. So, we need to
make high smaller, in particular we can safely set high = middle− 1, since
the middle is known not to be correct. Alternatively, if the host answers
“too low” then we know the number is larger than the middle we guessed,
so we set low = middle + 1.

Notice that in terms of the fingers used earlier, exactly one of the fingers
moves after an incorrect guess.

In figure 5.2 we show part of a decision tree that results from this think-
ing when N = 10. Compare this to figure 5.1. Ignoring the branches labeled
“correct” we see that the main difference is that in the guess-a-number prob-
lem we have a very regular way to generate the questions.

Notice that in any one game, the questions and answers will follow down
one sequence of branches until a branch labeled “correct’ is reached, assum-
ing the player always chooses the middle number as shown. Thus, there is
one such ‘correct” branch (called a leaf) for every number in the range. We
should note that if the algorithm is done correctly, and the host never lies
nor cheats, then leaves labeled “error” should never be reached. For exam-
ple, at the bottom left of the tree, since the range is [1 . . . 1] the answer must
be 1, so when the guess 1 is made it must be correct. So, if the host answers

CHAPTER 5. ALGORITHMS AND PET 151

ra
ng

e:
 [1

...
10

]
m

id
 <

--
flo

or
((1

+1
0)

/2
)

=
5

ra
ng

e:
 [1

...
4]

m
id

 <
--

flo
or

((1
+4

)/2
) =

2

ra
ng

e:
 [6

...
10

]
m

id
 <

--
flo

or
((6

+1
0)

/2
)

=
8

To
o

hi
gh

To
o

lo
w

Co
rre

ct

ra
ng

e:
 [1

...
1]

m
id

 <
--

flo
or

((1
+1

)/2
) =

1

To
o

hi
gh

ra
ng

e:
 [3

...
4]

m
id

 <
--

flo
or

((3
+4

)/2
) =

3

To
o

lo
w

ra
ng

e:
 [4

...
4]

m
id

 <
--

flo
or

((4
+4

)/2
) =

4

To
o

lo
w

Co
rre

ct

Co
rre

ct
Co

rre
ct

Co
rre

ct
To

o
lo

w

To
o

lo
w

To
o

hi
gh

To
o

hi
gh

To
o

hi
gh

Er
ro

r

Fi
ni

sh
 th

is
sid

e
as

 a
n

ex
er

cis
e

Er
ro

r

Er
ro

r

Er
ro

r
Er

ro
r

Figure 5.2: Partial Binary Search Decision Tree for N = 10.

152 5.3. SEARCHING ALGORITHMS

“too high” or “too low” it must be an error.
The fundamental reason we have this method of generating questions

for this decision tree is that the numbers are ordered. What this means in
general will become more apparent when we discuss binary search of a sorted
array in the next chapter.

CHAPTER 5. ALGORITHMS AND PET 153

5.3.4 Player for Guess a Number: Binary Search

It is quite easy to program a player to do sequential search. You just start
the program guessing at guess = 1 and keep looping, adding 1 to the guess
each iteration, and stopping when the host says “correct”. We leave this as
an exercise.

Programming the player to do a binary search on the other hand is more
interesting, and requires more understanding of the binary search algorithm.
The following code is in the file binary player.txt.

int N = 100
int lower_bound
int upper_bound
int middle
bool found
string answer

define main {
found = false
lower_bound = 1
upper_bound = N
while (not (found)) {

middle = (upper_bound + lower_bound) / 2
writeline "My guess is " middle
writeline "Is it high, low or correct"
read answer

if (answer == "high") {
upper_bound = middle - 1

} else {
if (answer == "low") {

lower_bound = middle + 1
} else {

if (answer == "correct") {
found = true

} else {
writeline "Unknown answer"

}
}

154 5.4. ALGORITHM QUESTIONS

}
}

}

In the code above, lower bound and upper bound act as described
previously. These delineate the current range where the hidden number
might be. Initially we set these to 1 and N respectively, as that is the full
range allowed by the game.

To do binary search, the game simply guesses the integer at the middle
of the range. This is computed by adding the two numbers together, and
dividing by 2. If the host says the guess is too high, then we know the upper
bound can be changed to the middle minus 1. It could not be the middle,
because the user should have answered “correct” if that were the case. It
cannot be bigger than the middle, because the middle itself is too high.

Similarly, if the answer is “low” then the lower bound is set to the middle
plus 1.

There are some exercises to try. What happens if the user lies at some
point? For example, what if the user just replies “low” all the time?

One of the exercises asks you to modify this program to handle such bad
behavior.

5.4 Algorithm Questions

We separate the questions in this chapter by section, but be aware that
questions for later sections assume you also know the material in earlier
sections. Starred questions are for those wishing a little more challenge, and
deeper insight into algorithmic issues. They are not indicative of questions
you would be asked on an exam in this course.

5.4.1 From section 5.1

1. Draw the decision tree that represents the hat/coat/shirt/tie program
in section 5.1.3.

2. Write a PET program to convert from Fahrenheit to Centigrade.

CHAPTER 5. ALGORITHMS AND PET 155

5.4.2 From section 5.2

1. Print: Write an output subroutine to complete the program to convert
base ten to binary in the file convert ten to binary.txt. To do this, write
a subroutine that outputs the 32 bit binary number that is stored in
the array bit on one line. This should print the binary number in the
correct format, with the highest order bit on the left. That is, if the
user entered the number 13, the output should be

00000000000000000000000000001101

and NOT 10110000000000000000000000000000.

2. Better Print: Modify the output subroutine in the previous question
so that it suppresses leading 0’s. Thus, to print the binary represen-
tation of 13 you should only print 1101. Note: if the input number is
zero, then a single digit “0” should be printed.

3. Efficiency: If you run the program in the file convert ten to binary.txt
and input value 13, you will notice that most of the time is spent
running through the loop setting leading bits to 0, which is wasteful
since the array is already initialized to 0. Modify the program so that
once the value in copy is 0, the program quits the while loop.

4. Generality: Modify one of your programs based on the program in the
file convert ten to binary.txt so that it can convert the input number to
any positive base 1 < b ≤ 10. You should ask for b as an input. Start
with a version that has a suitable output routine from the previous
questions.
Representation

(a) What happens if you try to use base b = 1?

(b) What is the issue if you try to use a base b > 10?

5. General Conversion to Base Ten: Modify the program to convert
binary to base ten in the file convert binary to ten.txt to ask for an
input value b with 0 < b ≤ 10 and then treat the rest of the input as a
number in base b. This number should then be converted to base ten
and output.

156 5.4. ALGORITHM QUESTIONS

6. Note that if you do the previous two questions in this section you will
be able to convert from any base 0 < b ≤ 10 to any other. Combine
the two relevant programs into one program.

7. For the unmodified program in the file convert binary to ten.txt what
happens if you enter all 32 binary digits and enter a 1 for bit[31]?

8. Write an algorithm to convert a 32 bit positive integer in binary to its
negative value in the two’s complement representation. Hint: start by
computing the one’s complement.

9. Write a PET program to read a positive integer n and then print out
each divisor. Recall a positive integer p is a divisor of n if it divides it
with no remainder.

10. Write a PET program to read a positive integer n and determine if it
is a prime number. Recall that n is prime if n > 1 and its only divisors
are 1 and itself. Hint: Consider either the previous question or the
Sieve of Eratosthenes in one of the questions in section 4.4. These will
lead to different algorithms, one using an array. What is a possible
issue with using an array for this question?

5.4.3 From section 5.3

1. Consider the program in the file sequential host.txt. A session is any
one run of the program, which may involve playing several games.
Make modified programs to do the following.

(a) Count the number of guesses the player uses, and report this when
each game is finished.

(b) After each game, report the number of guesses used in that game,
and also the average number used in all games played so far in this
session. The average is defined as (total guesses over all games)
/ (number of games played).

(c) Place an upper limit on the number of guesses allowed for any one
game, and if this is exceeded without finding the hidden number,
then that game stops and is reported as a loss by the player. Keep
a record of wins and losses and report this after each game, and
after the user stops playing.

CHAPTER 5. ALGORITHMS AND PET 157

2. Starting with the program in the file sequential host.txt, make a host
that supports binary search as discussed in class. That is, the host
should report “high”, “low” or “correct” for each guess. Then modify
this program to add all the enhancements of the previous question.

3. Write the player program for the sequential search approach. Modify
it to report how many guesses are used.

4. Complete the binary search decision tree in figure 5.2 for N = 10.

5. Modify the program in the file binary player.txt to detect cheating on
the part of the host, as mentioned in the text.

6. One variation of the “Guess a Number” game is the “Unbounded num-
ber guessing game”. In this the host is allowed to choose any positive
number and asks you to guess it. Solving this efficiently requires a
different approach. To get an O(log n) search, you can start with a
small guess, then keep doubling your guess until an upper bound is
found. After that you use binary search. Modify the binary search
player program for “Guess a number” to play the unbounded version.

7. ** Creating an Adversary. The idea here is to create a host
that kind of cheats. You should write a host program supporting only
sequential search that will always make the player use the maximum
number N of guesses. The cheat is that the program does not actually
think of a hidden number, it simply keeps track of the guesses made,
and keeps saying “no” until only one unguessed number remains. Then
it says “yes” when that last number is guessed. NOTE: you cannot
assume that the player always guesses in the order 1, 2, 3, . . . N . Also,
your answers must be consistent; that is, if you say “no” to a guess
of 13, and then later the player again guesses 13 you cannot then say
“yes”. Hint: use an array.

8. **More Adversary. Similar to the previous question, create an ad-
versary host that supports binary search. The idea is that if the player
does not choose the middle of the current [low . . . high] range then the
adversary picks the answer that leaves the largest possible subrange to
contain the hidden value. Be careful, this also must be consistent, and
that is trickier here. For example, you cannot assume that the player
will even pick a number in the current known range. You must remain

158 5.4. ALGORITHM QUESTIONS

consistent under any sequence of guesses the player might decide to
use, even guesses that are negative or larger than the upper limit N .

Chapter 6

Introductory Searching and
Sorting

For many problems it is convenient to have collections of data, that is vari-
ables, that are associated together under one name. In PET, one type of
collection is provided, namely the array discussed initially in Chapter 4 and
used a bit in Chapter 5.

In this chapter we discuss searching and sorting algorithms for arrays.
As part of this, we want to illustrate some of the properties of algorithms we
are interested in, principally efficiency, or the number of steps the program
uses. As arrays, or problems in general, get larger the differences in how
many steps different algorithms take to do the same task can be enormous.

As with most introductory courses, we focus mainly on simple mechanics
of the algorithms, and our analysis is very simple and informal.

6.1 Sequential Traversal of an Array

If you need to, revisit chapter 4 and the declaration and descriptions of
arrays. Here is the basic form of most array traversals, which we refer to as
a sequential traversal.

int N = 25
array A[N]
int i

159

160 6.1. SEQUENTIAL TRAVERSAL OF AN ARRAY

define main {
fillarray A
i = 0
while (i < N){

do something with value A[i]
i = i + 1 # next element

}
}

We precede the actual traversal with a fillarray A command, which when
executed fills the cells of the array with integers randomly chosen in the
range [1, 250], or in general [1, 10×N].

We use this form, suitably modified, throughout this section.

6.1.1 Addition and Other Functions on an Array

We use the basic form to compute the average of a randomly filled array.
The average is defined as the sum of the values divided by the number of
values. Here is a program to do this.

CMPUT the average
int N = 25
array A[N]

int i

int sum, avg

define main {
fillarray A

sum = 0
i = 0
while (i < N){

sum = sum + A[i]

i = i + 1 # next element
}
avg = sum / N

CHAPTER 6. INTRODUCTORY SEARCHING AND SORTING 161

writeline "Average is " avg

}

Recall the quotient and remainder function from chapter 5. Here we
use this to illustrate that, using arrays, we can do a range of functions that
work over pairs of arrays. The following, for each i, divides the larger of
two corresponding values by the smaller and stores the remainder in a third
array. Its only purpose is to illustrate a slightly more complex array example.

Fill C with the remainder of larger divided by smaller
int N = 10
array A[N], B[N], C[N]

int i

int dividend # must be set before each call
int divisor # must be set before each call
int remainder # set by the subroutine
int quotient # set by the subroutine
int temp # for internal subroutine use

define quotient_and_remainder {
quotient = dividend / divisor
temp = quotient * divisor
remainder = dividend - temp

}

define main {
fillarray A
fillarray B

i = 0
while (i < N){

if (A[i] > B[i]) {
dividend = A[i]
divisor = B[i]

162 6.1. SEQUENTIAL TRAVERSAL OF AN ARRAY

} else {
dividend = B[i]
divisor = A[i]

}
call quotient_and_remainder
C[i] = remainder

i = i + 1 # next element
}

}

There are a number of exercises in the questions at the end of the chapter
that ask you to compute various functions over the elements of an array.

6.1.2 Searching for an Element

Here is a basic algorithm for sequentially searching an array for a given value.
This program can be found in the file seqfind.txt.

Sequential array search
int N = 15
array A[N]

int i
int loc
we will write a program to sequentially search
for the following value in the array
int search_value

define main {
fillarray A

writeline "Enter number to search for"
read search_value

loc = - 1
i = 0

CHAPTER 6. INTRODUCTORY SEARCHING AND SORTING 163

while (i < N){
if (A[i] == search_value) {

loc = i
}
i = i + 1 # next element

}
if (loc < 0) {
writeline search_value " value not found"
} else {
writeline "The value " search_value " is in location " loc
}

}

Note since PET displays the internal memory, including the array A after
it is filled, it is easy to test this program. First you should run the program
and enter values in the array to verify the program finds them. Then you
should use the program to search for values not in the array. You may want
to also test that it finds the value if it is in the 0th or (N − 1)th locations.
Checking these end points of the array is known as checking the boundary
conditions. This particular program is fairly simple, but in more complex
programs such cases are often the sources of errors.

6.1.3 Finding the Maximum in an Array

Now we want to find the maximum element in an array. This differs slightly
from searching for a given value, since we do not know either what value the
maximum will be or where it is. We need to keep track of the biggest we
have seen so far in the traversal of the array. If we see a bigger value, then
we switch to that one as the biggest so far. But where do we start? Well, if
we could assume the array values are all positive, we could start by setting
the known maximum to a negative value. But this is dangerous, because
we might want to do a search sometime on an array whose values are all
negative.

It is better to start without making any assumption about how big or
small the values might be. Suppose that we start at index 0. Then the
biggest we have seen so far is A[0] in location 0. So, we initialize our max-
imum and maximum location to A[0] and 0 respectively, and then iterate
through the rest of the array checking to see if there is a bigger value we

164 6.1. SEQUENTIAL TRAVERSAL OF AN ARRAY

should use. Here is the code which can be found in the file findmax.txt. Note,
for this example we have added line numbers for reference purposes.

1 # Sequential array search to find the maximum
2 int N = 25
3 array A[N]
4
5
6 int i
7 int loc, max
8
9 define main {
10 fillarray A
11
12 # we start by setting the maximum
13 # to be the first element
14 max = A[0]
15 loc = 0
16
17 i = 1
18 while (i < N){
19 if (A[i] > max) {
20 loc = i
21 max = A[i]
22 }
23 i = i + 1 # next element
24 }
25 write "The maximum is in location " loc
26 writeline " with value " max
27
28 }

See the exercises for some variations that you should work out.

6.1.4 Run Time Stats: Find Max

We now consider one of the properties we strive for in algorithm design,
namely making an algorithm that executes as quickly as possible. In general,

CHAPTER 6. INTRODUCTORY SEARCHING AND SORTING 165

we want an algorithm that is competitive against other algorithms as the
size of the instances increases.

We will look at the algorithm for finding the maximum in terms of its
Run Time Stats as recorded in the lower right pane of the PET tool.
We remind the reader that the code we are considering is presented in the
subsection 6.1.3, and can be found in the file findmax.txt in the sample
programs for this chapter.

The line labeled All in the Run Time Stats pane counts the total
number of statements executed by the program. If you run the program
slowly, or step through the program line by line, you can see this counting
in action, as each step increases the count by one.

In addition to the total count, you can obtain the count for any individual
line of the program. To do this, select the line of interest, and right click
(or control click if using a single button mouse), then in the pop-up select
Toggle Statistics Line. This will cause a green highlight to appear on the
selected line.

We suggest you try this now on the line “if (A[i] > max) {”, which
is line number 19 in the original program. (If you edit the program, line
numbers may change.)

If you now run the program you will find that in the Run Time Stats
pane a new line entry occurs, which displays the count of the number of
times this particular line is executed. To stop the stats for a particular line
just reselect the line and toggle again. You may have stats turned on for
several lines at once.

Now we want to determine how this program behaves as we change the
size of the array. But first there is a problem. If you run the program several
times on the same size array, you will find that the number in the line All
differs from run to run.

The reason is that the lines of the if code block

loc = i
max = A[i]

}

which are lines 20, 21 and 22 in the original code, will execute a differ-
ent number of times depending on the contents of the array A. Since
“fillarray A” in line 10 creates a different set of numbers for each run,
the totals vary. To see this, toggle the statistics on for line 20, and run the
program a few times, watching the results for line 20. If you still do not

166 6.1. SEQUENTIAL TRAVERSAL OF AN ARRAY

understand why this variation happens, you should change the array size to
5, and step through the program a few times line by line.

On the other hand, with N = 25 line 19 always executes 24 times. This
is because we always do the comparison of max to every element but the
first, so we always do N − 1 comparisons. Note that each of the lines 20, 21
and 22 can only execute at most N −1 times, since they only execute if the
if condition is true.

You can also verify that the while statement always executes N times,
and lines 23 and 24 each execute exactly N − 1 times. Adding these all up
we see that the maximum total for lines 18,19,20,21,22,23 and 24 is at most
6 × (N − 1) + N = 7N − 6. All other lines execute exactly once, for an
additional total of 12. You may want to check this. Remember, don’t count
blank or comment lines.

So, in the worst case the program executes about 7N statements.
On the other hand, in the best case, the lines 20,21 and 22 never execute.

This saves about 3N from the total, so in the best case the program executes
about 4N statements. In summary, on an array of size N , the program will
execute between 4N and 7N statements.

At this point you should check the exercises on counting the number of
statements executed in this program. These will illustrate what needs to
happen to achieve the best and worst case executions.

Note that the worst case only uses a constant times N executions.
Computing scientists say that if a program only executes a constant

times N statements, then the program runs in order N time and use the
shorthand O(N) time. Note that the comparisons done in the line 19, “
if (A[i] > max) {” are a good indicator of the running time of this
program, because we always do N (minus 1) of them.

6.1.5 Why not use binary search?

We can ask the binary search question about both searching for an element
as in subsection 6.1.2 and about finding the max as in subsection 6.1.3.

When programming a search for an element in an array, it is important
to remember that the computer can only “see” one cell at a time. But to use
binary search for an item in an array we must be able to ask a simple query
(or two), in the form of a location, and determine whether it is the correct
location, and if not, we must then know whether the item is to the left or
right of the current guess. But the only way to know whether an element is

CHAPTER 6. INTRODUCTORY SEARCHING AND SORTING 167

to the left of a particular index when the array is unsorted (random), is to
look at all the cells to the left. So, binary search will not work because the
items are not in any particular order.

However, we will see in section 6.3 that if the array is in sorted order,
then we can check a location against the value we are looking for, and by
comparing the item to the one we want, we will know whether we should
look left, right or already have it.

For finding the max, the problem is even more complex in the unsorted
case, because not only do we not know where the largest value is located, we
also do not know what the largest value is. However, if the array is sorted
in increasing order, then we instantly know that the largest value is in the
last position. Thus, for a sorted array, no searching is required to find the
largest value.

We see that having an array sorted is useful in many problems. Sorting
adds information to the set of data that makes it easier to use in many
circumstances. But, to have a sorted array, most often we need to sort an
unsorted version. This act of sorting is one of the most studied areas of
computing science, and so we discuss a few examples in the next section.

6.2 Elementary Sorting Algorithms

In this section we study some simple sorting algorithms in the context of
elementary arrays which are initially randomly filled with integers, using
the fillarray command. As always we declare our arrays using the two line
approach

int N = 10
array A[N]

so that by changing the initial value of N we can try our algorithm on
different sizes of arrays.

6.2.1 Swap

One of the first things we will need to do is swap two elements of an array.
The thing that trips up many first time attempts is that you must have a
temporary storage variable to hold one of the elements, while the other is
moved into its place.

168 6.2. ELEMENTARY SORTING ALGORITHMS

We illustrate this in figure 6.1. This figure illustrates the steps required
to swap elements A[i] and A[j] where i = 1 and j = 4. The first step is to
copy (i.e. assign) one of the array elements to the variable temp. Here we
choose to copy the value three form A[1] to temp. The second step is to copy
the other array element into the first location. The third step is to copy the
value in temp to A[j].

5 3 11 2 19 1 21

0 1 2 3 4 5 6

temp

A

STEP 1
temp = A[i]

STEP 2
A[i] = A[j] STEP 3

A[j] = temp

Figure 6.1: Swapping elements A[i] and A[j], where i = 1 and j = 4.

If we wish, we can define a subroutine swap to swap elements to make
our program easier to read. We just have to be certain to set the indices
correctly before calling the swap routine. Note that a limitation of PET is
that we must write a different routine for each array that we might want to
perform swaps on. We will do this in the next section.

6.2.2 Selection Sort

Recall that in subsection 6.1.3 we wrote a program to find the maximum
element in an array. This technique is also known as selection. We can use
this idea as the basis for sorting. The idea is quite simple, which we outline
here.

repeat until sorted
Find the location of the maximum in the unsorted part
Swap this with the element at the end of the unsorted part.

CHAPTER 6. INTRODUCTORY SEARCHING AND SORTING 169

The idea of the sorted and unsorted parts of the array for selection sort
is illustrated in figure 6.2, where the set of values is the same as in figure 6.1,
but the algorithm has been running for a few steps.

5 3 1 2 11 19 21

0 1 2 3 4 5 6

A

Figure 6.2: Unsorted (left) and sorted (right, colored) parts of an array
during selection sort.

At this point the elements 11, 19 and 21 located in positions 4, 5 and 6
are in their proper (sorted) order, and they are in their final locations.

In the next phase, the maximum of the values in positions 0, 1, 2, and
3 will be located. The selection, or find max, will identify the location as
0, containing the value 5. This value will then be swapped with the 2 in
position 3.

The algorithm requires a few details. We need to keep track of what we
know is sorted. Special note: the array may be sorted before the algorithm
knows that it is sorted. For example, even if the the array is completely
sorted, we will still go through the entire sequence of steps.

The main routine is designed to test the sorting algorithm.

define main {
fillarray A
call selection_sort

}

Here we give the routine selection sort, which resembles the outline
given above.

define selection_sort {
num_rem = N
while (num_rem > 1) {

call find_max
num_rem = num_rem -1
call swap

170 6.2. ELEMENTARY SORTING ALGORITHMS

}
}

The variable num rem keeps track of how many elements remain un-
sorted. Initially all elements are unsorted, so it is initialized to N , the size
of the array A. After the program returns from the call to the routine
find max, a variable loc will indicate the index of the maximum value in
the cells of the array between cell 0 and num rem − 1. We know that we
want to reduce the value of num rem before the next iteration of the loop,
and we want to swap the value in A[loc] with the value in A[num rem− 1]
so we reduce the variable before calling the swap routine.

Here is the subroutine find max modified slightly to suit our purposes
here.

define find_max {
max = A[0]
loc = 0
i = 1
while (i < num_rem){

if (A[i] > max) {
loc = i
max = A[i]

}
i = i + 1 # next element

}
}

And to complete the program, except for declaration of variables, we
show the swap subroutine, again specialized to our needs. Notice how the
steps correspond to the ones in figure 6.1, although we use different names
for the array indices here.

define swap {
temp = A[num_rem]
A[num_rem] = A[loc]
A[loc] = temp

}

The complete maximum selection sort program can be found in the sam-
ple programs for this chapter, in the file selectionsort.txt.

CHAPTER 6. INTRODUCTORY SEARCHING AND SORTING 171

See the exercises for some tracing problems and questions on sorting of
the type you should be able to do on an exam.

6.2.3 Run time analysis of selection sort

If you try the selection algorithm for various sizes N of the array A, you
will find that increasing N causes the run time and the line count All in the
Run Time Stats to increase rapidly.

To check the following, you may wish to set the Run Speed to its
maximum value of 5. For N = 10 you should find that the total statements
executed typically ranges between 350 and 400. For N = 20, the range
increases to 1120 through perhaps 1230. For N = 100 the total ranges from
around 22200 to 22800, and you will also notice that it takes an appreciable
amount of real time to execute, using approximately 5–6 seconds on my
desk top machine with Run Speed set to 5. The measurement was not
very accurate, as it involved watching a clock and the program at the same
time.

Caution: I have had quite widely varying results in timing.
Timing is not very reliable on PET.

If you try to increase the size to N = 1000 you can probably have a cup
of coffee while waiting for a single sorting run, even with the Run Speed
set to its maximum value.

Clearly this is a costly program to run for larger arrays. How can we get
a handle on how bad it is?

Let us start at the top, in the while loop in the code block in define
main. Clearly the majority of code lines executed will be in the two sub-
routines find max and swap. So, we toggle the statistics on for the two
lines

call find_max

call swap

which are lines 54 and 56 in the current code in selectionsort.txt.
If we run this after making N = 100 in the declaration of N , we get stats

like the following (your value for All may vary somewhat)

172 6.2. ELEMENTARY SORTING ALGORITHMS

Line Number of Executions
All 22311
54 99
56 99

As an exercise you be able to see that the number of calls to each of the
subroutines find max and swap is always N − 1 (here 99 = 100− 1). Also,
every time swap is called, each of the 5 lines of the procedure are executed
exactly once. So in total, swap contributes less than 500 of the total of
22311 lines executed.

Thus the majority of the time must be spent in the routine find max.
In this case, let us concentrate on that routine.

Recall that in our analysis of the maximum selection routine in subsec-
tion 6.1.3 we found that the key indicator of the running time of find max
is the number of times done in the line

if (A[i] > max) {

executes. This happens to be line 29 in the version of selection sort at the
time of this writing. Toggling the stats on this line, and running the program
with N = 100, we typically get Run Tiime Stats as follows

Line Number of Executions
All 22755
29 4950

Again, if we try multiple runs, the line All will vary from run to run, but
he line 29 always executes exactly 4950 times, when N = 100.

Where does that 4950 come from? Well, recall that when num rem =
100, as it does the first time find max is called, the if statement executes 99
times. We saw this in subsection 6.1.3. Similarly, the next time find max
is called, num rem = 99 and so the if statement is executed 98 times.
Continuing in this way we see that the if statement is executed a total of
99 + 98 + 97 + . . . + 3 + 2 + 1 times, and if you add this up, it is indeed
4950. We also already know that the 4 lines of the while loop always execute
every time this if does, so even ignoring the if code block the while loop
always contributes 4 ∗ 4950 = 19800 line executions. Clearly, this is where
the majority of the sorting work is done.

Can we get a better handle on this? Yes. In terms of the size of the
array N that sum is just (N − 1) + (N − 2) + (N − 3) + . . . + 3 + 2 + 1 and
it is well known (see wikipedia e.g.) that this is equal to N(N−1)

2 .

CHAPTER 6. INTRODUCTORY SEARCHING AND SORTING 173

Note that N(N−1)
2 can be written as N2

2 −
N
2 . The term involving N2 is

the one to watch. It indicates the rough growth rate of the execution time
of the algorithm. As N gets larger, the other terms become less and less
important.

We say that the running time of this algorithm is O(N2) or quadratic.
Suppose we increase the size of the array by a factor of 10, that is, we

replace N by 10N . Then the lead term goes from N2

2 to (10N)2

2 = 100N2

2 .
This means that increasing the size by a factor of 10 increases the running
time by a factor of roughly 100.

Precisely, if we make N = 1000, then the number of times the if executes
is 1000 × 999/2 = 499500. Since for N = 100 we executed the if 4950, this
means the number of times this statement executed increased by a factor
of 499500/4950 ≈ 100.9. Since the total lines executed are at last 4 times
this number, we expect it to use about 2 million line executions to sort 1000
items. Here is the result of an actual run.

Line Number of Executions
All 2030421
29 499500

We see the total number of lines executed is close to the expected. The ratio
of the total lines executed of 2030421 to the 22311 in the first example above
is 91, and the ratio to 22755 in the second example is 89, both of which are
close to the factor of 100 we estimated by ignoring the low order terms.

This run took about 14 and 1/2 minutes. This is more than 100 times as
long, which may be due to things like the larger array size, and inaccuracies
in time measurement.

If we increased by another factor of 10, to N = 10000, the time should
increase by another factor of about 100, or a total of roughly one day. I have
neither the time nor patience to test this.

6.2.4 Insertion Sort

Like selection sort, insertion sort also maintains a part of the array that is
sorted. However, unlike selection sort, the elements in this sorted part are
not necessarily in their final locations until the sorting process is completed.

The idea is that we run through the items, and as we encounter each
item it is inserted into the sorted part by moving over as many elements as
necessary.

174 6.2. ELEMENTARY SORTING ALGORITHMS

Figure 6.3 illustrates the result of a partial run of the algorithm. The
next element that should be inserted is the 5 in location 3. To insert the 5,
the elements in A[1] and A[2] will have to be moved one step to the right.
After this insertion the first 4 elements of A would be 3, 5, 9, 11 with 1, 8, 10
remaining untouched.

0 1 2 3 4 5 6

113 9 5 1 8 10A

Figure 6.3: Insertion Sort with the sorted part highlighted on the left.

We could ripple each value in A to its position by repeatedly swapping
it with its neighbor to the left until it is in its correct place. Here is a high
level description

next = 1
while (next < N) {

repeatedly swap the value in A[next] with the element to its left
until the elements A[1] . . . A[next] are sorted.

next = next + 1
}

Since the values in A[1] . . . A[next − 1] are sorted when we are ready to
insert A[next], The swapping process stops as soon as the element to the left
is smaller than the value in A[next].

Thus, the process above can be refined as follows

next = 1
while (next < N) {

loc = next
while ((loc > 0 and (A[loc] < A[loc− 1])) {

swap A[loc] with A[loc− 1]
loc = loc− 1

}
next = next + 1

}

CHAPTER 6. INTRODUCTORY SEARCHING AND SORTING 175

This swapping to the left process combines the swapping with a test to
determine when the element is in its correct place. But it is frequently a
good idea to break down a problem solution into its parts in order to make
it clearer and to look for improvements. Recall that each swap will require
three assignments to be carried out.

For the next attempt at insertion sort, we will refine the algorithm into
two parts; (i) find the spot where the element should go, and (ii) move the
elements bigger than the value in A[next] to the right, then put the value in
place.

Here is the top level subroutine insertion sort from the code in the file
insertionsort.txt.

define insertion_sort {
next = 1
while (next < N) {

call find_insertion_loc
call shift_and_insert
next = next + 1

}
}

The next task in our algorithm design is to find the spot in the sorted
part where the value in A[next] should go. It is possible that it goes at the
end of the sorted list, which means it is already in its proper place with
respect to the sorted part. In this case nobody moves. On the other hand,
it may have to go at the very beginning, in which case all the elements in
the sorted part have to move one step to the right. The following subroutine
find insert loc solves this problem, but it is not very efficient. See the next
subsection on analyzing this program, and the exercises at the end of the
chapter for ideas on how this can be improved.

define find_insertion_loc {
insert_loc = next # A[next] may be right here
prev = next - 1
while (prev >= 0) { # scan back to see is an earlier

where A[next] should be
if (A[prev] > A[next]) {

insert_loc = prev
}

176 6.2. ELEMENTARY SORTING ALGORITHMS

prev = prev - 1
}

}

The final piece is the subroutine shift and insert. Instead of doing
repeated swaps, we simply make a copy of the value A[next] and then move
each of the elements to the right until we reach the location where the saved
value goes, then we copy it back in. Here is the code. Notice that this
routine uses a total of k + 2 assignment operations to move the value k
locations, whereas a sequence of k swaps would use 3k swaps, so this does
save a significant number of steps.

define shift_and_insert {
next_value = A[next] # as in swap, we must save this one
i = next
while (i > insert_loc) { # move elements oneto the right

A[i] = A[i-1]
i = i - 1

}
A[insert_loc] = next_value # re-insert the saved element

in its new location
}

The entire program can be found in the file insertionsort.txt.

6.2.5 Run time analysis of insertion sort

Like selection sort, insertion sort is also quadratic, or order N squared, which
we write as O(N2).

Let us get an estimate on the total number of moves required in the worst
case, as they will be done in the procedure shift and insert. In the worst
case, each time we insert a value A[next], it must be located in position 0.
So, all the items to its left must move one step to the right. Thus, when
next is 1, 1 item moves right, and for next = 2 two items move and so on
for a total of

1 + 2 + 3 + . . . + N − 1 =
N(N − 1)

2
Of course, each move requires several program steps, so this number will be
multiplied by a constant.

CHAPTER 6. INTRODUCTORY SEARCHING AND SORTING 177

On average, using the assumption that the next value is random, we can
expect that it will go in the middle of the already sorted part, which implies
that the total moves will be about half of that above.

As currently implemented, a comparable number of steps will be required
in the routine find insertion loc in terms the of comparisons required to
find the location. In fact, as currently implemented, we continue all the way
to the beginning every time, making comparisons after insert loc is already
established. One of the exercises asks you to fix this. But in the worst case
this fix won’t help.

In any case, we see that in the worst and average cases, this program
requires a constant times N2 steps to complete. In fact, as implemented, it
is more costly to run on average than selection sort, requiring about 50–60%
more steps on a typical run on array of size 100.

There is one bright side. As an additional exercise, think about how long
this program takes when the N items in A are already sorted in increasing
order. If A is already sorted, or nearly sorted, then this program will be
much faster. In the “real world” things are often partially sorted, and so
this might be an advantage worth considering.

However, we have much better, albeit more complex, sorting algorithms
that are far more efficient. We will look briefly at one of these in chapter 7.

6.3 Binary Search of a Sorted Array

Now that we have a way to sort our arrays, we can apply binary search to
the task of looking for an element.

Here again is the problem:

Instance A sorted array A of size N , and an integer x.

Query Is the integer x in the array A, and if so what is its index?

We remind you again of how binary search works in general.

1. We must have an ordered search space.

2. Secondly, we must find a question that we can ask about any particular
location, and the answer must eliminate either the elements before the
location or beyond the location (or both).

178 6.3. BINARY SEARCH OF A SORTED ARRAY

For this problem, searching a sorted array for an element x, first the array
is sorted, so we have an ordering. Second, our query can be to compare x to
A[i] for any i between 0 and N − 1. If x > A[i] then if x is in A it must be
in one of the cells A[i + 1] . . . A[N − 1]. Otherwise, if not(x == A[i]) then if
x is in A it must be in one of the cells A[0] . . . A[i− 1].

Note that we must also allow for the case that x is not in A. This will
happen if one of the following three occurs:

1. x < A[0]
or

2. x > A[N − 1]
or

3. there is some i such that A[i] < x and A[i + 1] > x.

These cases might be called boundary conditions, because they bound the
search when the value in x is not present in the array.

To implement binary search, we start by choosing upper and lower bounds
that will ensure that if x is present it is between these locations. Given an
array A with indices 0 . . . N − 1 it might seem obvious that the appropriate
initial bounds are 0 for the lower end and N − 1 for the upper. Indeed,
these are what we will choose for our implementation, but we note that we
could approach this by choosing the lower bound to be −1 and the upper
bound to be N and then working under the assumption that the range is
strictly between these bounds. Such choices will lead to different details of
implementation, for example in boundary detection. You may wish to try
this as an exercise.

We use a multi-part query that guarantees that if we have not found
the item in the middle, then it is either strictly to the right of the middle,
or strictly to the left of the middle. By using this, and having the bounds
start at 0 and N − 1, we can cover the three boundary conditions by sim-
ply observing when the lower bound is greater than the upper bound. For
example, if the lower bound is 0 and the upper bound is −1 then the upper
bound is less than the lower bound, so we know the query value is not in
the array. This covers the first boundary condition above, when x < A[0].
You should verify that testing that the lower bound is larger than the upper
bound also covers the other two boundary conditions.

Here is the binary search routine that can be found in the sample pro-
grams in the file binarray.txt.

CHAPTER 6. INTRODUCTORY SEARCHING AND SORTING 179

define binary_search {
lower_bound = 0 # initally we include the entire
upper_bound = N-1 # array as our search range
found = false
we search until found or boundary conditions are false
while ((not found) and (lower_bound <= upper_bound)) {

middle = (lower_bound + upper_bound) / 2
if (x < A[middle]) { # must be to the left

upper_bound = middle - 1
} else {

if (not (x == A[middle])) { # must be right
lower_bound = middle + 1

} else {
found = true

}
}

}
if (found) {

writeline x " is found in location " middle
} else {

writeline x " is NOT in the array."
}

}

Note that we only report on whether or not we found the item after the
while loop is complete. We simply have to check the boolean value found
to know whether or not it was found in the array. If it was found, then the
index middle indicates its location.

6.3.1 Binary Search analysis

As in subsection 5.3.2 we note that if we make k queries where 2k ≥ N then
we will know whether or not our number is in the array. To test this, use
the code in the file binarray.txt and modify it to set N = 100 as the initial
array size. Note that 27 = 128 > 100 so we should generally find the number
if it is in A in 7 iterations of the while loop, and otherwise we will know it
is not in the array.

Now toggle on the statistics for the line

180 6.4. EXERCISES ON SEARCHING AND SORTING

middle = (lower_bound + upper_bound) / 2

Make a number of queries for numbers both in and not in the array, and
note that we never increase the stats on this line by more than 7 for each
query.

6.4 Exercises on Searching and Sorting

In the following, when a question refers to an array of size N , then you
should make your program so that it works for any size N . You should try
it for N = 10, N = 25 and a few other sizes to be certain it works correctly.
All programs to be written in PET.

1. Vector addition Write a program that takes two arrays of the same
size N , and adds the values pairwise into the corresponding cells of a
third array. Try your program by randomly filling the two input arrays
using fillarray.

2. Squaring numbers Write a program that starts with an array of size
N . Fill the array with the squares of the index of the corresponding
cell, for example A[3] should have value 9.

3. Fibonacci Write a program that fills an array A of size N as follows.
A[0] = 1, A[1] = 1 and for i > 1, A[i] is the sum of A[i−1] and A[i−2].

4. Running Totals Write a program that fills an array of size N so that
the A[0] = 1 and for i > 0, A[i] has the total of cells A[0] through
A[i− 1]. Are you surprised by the result?

5. Smallest Remainder Randomly fill an array of size N = 25 and then
find the element that has the smallest remainder when divided by 131.
Recall we developed a remainder function in chapter 5.

6. Make Find Efficient Modify the program in the file seqfind.txt so
that as soon as the hidden value is located the while loop terminates,
instead of running on through the rest of the array.

7. Count Finds Modify the program in the file seqfind.txt so that it
counts how many times a number occurs in an array. If the number is
not in the array, then your program should report 0 times. To test this,

CHAPTER 6. INTRODUCTORY SEARCHING AND SORTING 181

after filling the array, replace each entry in the array with its remainder
when divided by 10. If you have an array of size N = 25, some numbers
will be repeated. Now modify the program so that it asks the user for
the number to be searched for. On running the program, since you
can see the array, you ask for those numbers and verify your program
counts correctly.

8. Min Write a program that fills an array of size N , and then find the
minimum value in the array and report its location. Note this is very
similar to the find the maximum problem.

9. Min Variation Write a program that randomly fills two arrays A and
B each of size N . Your program should report the smallest value in B
that is larger than the smallest value in A. For example, if A has the
values 4, 11, 7, 13, 5 and B has values 8, 2, 5, 3, 11 then your program
should output 5.

10. Counting Line Executions Starting with the code from findmax.txt,
using N = 25, add the following line immediately after the line
fillarray A

A[0] = 10000

Note that 10000 > 250, the maximum value that will be assigned by
fillarray. Without running the program, predict how many times will
the line loc = i be executed? Verify your answer by running the
program.

Note: when you insert or delete lines of code in PET, old
toggles will no longer be on the correct lines. Be sure to
change them. It is best to toggle them off before editing.

11. More Counting Starting with the code from findmax.txt, using N =
25, replace the line fillarray A with the following code

i = 0
while (i < N) {

A[i] = i
i = i + 1

}

182 6.4. EXERCISES ON SEARCHING AND SORTING

Predict how many times the statement loc = i will be executed, and
verify your prediction.

12. Tracing Selection Sort In the routine selection sort in the code
in the file selectionsort.txt we will say a phase completes each time the
program completes execution of the line “call swap”. The first row
of the following table represents the array A of size 7 just after the
array has been randomly filled. Complete the table by filling in the
rows showing the state of the array after the completion of each phase
until the program terminates.

13 2 7 5 14 1 9

Note: to verify your answer, you can modify the selection sort program
so that it uses an array of size 7, and asks for the array to be input by
the user instead of being generated at random. Then toggle on a break
point immediately after the line “call swap” and check the results in
memory against your answers here.

13. Minimum Selection Sort Modify the selection sort routine to work
by repeatedly selecting the minimum value in the unsorted part and
inserting it at the beginning of the unsorted portion. Thus, in this
version the sorted part is at the beginning, and the unsorted is at the
end. Note this does not mean the array is to be sorted in descending
order. The final array should be in ascending order.

CHAPTER 6. INTRODUCTORY SEARCHING AND SORTING 183

14. Tracing Insertion Sort In the routine insertion sort in the code
in the file insertionsort.txt we will say a phase completes each time
the program completes execution of the line “call shift and insert”.
The first row of the following table represents the array A of size 7 just
after the array has been randomly filled. Complete the table by filling
in the rows showing the state of the array after the completion of each
phase until the program terminates.

13 2 7 5 14 1 9

Note: to verify your answer, you can modify the insertion sort program
so that it uses an array of size 7, and asks for the array to be input
by the user instead of being generated at random. Then toggle on a
break point immediately after the line “call shift and insert” and
check the results in memory against your answers here.

15. Improving Insertion Sort (I)
Modify the subroutine find insertion loc in the program in the file
insertionsort.txt so that once we know for certain what the insertion
point is, the loop is terminated, instead of running all the way to minus
1 each time. Run some tests to see if you can notice any improvement.

16. Improving Insertion Sort (II)
Modify the subroutine find insertion loc in the program in the file
insertionsort.txt to use binary search to find the location of the next

184 6.4. EXERCISES ON SEARCHING AND SORTING

insertion point. Run some tests to see if you can notice any improve-
ment.

17. Using Sorting When fillarray is used to fill an array, since the num-
bers are generated (pseudo) randomly for each entry, it is possible that
some number appears more than once in the array.

(a) Write a subroutine in PET code to determine whether or not any
number appears more than once in an array A. Hint: start with
one of the sorting programs, and make it into a subroutine. Make
your program work on the sorted array.

(b) Once you have the subroutine in the first part working, write
a program to repeatedly fill an array 100 times and determine
whether or not it contains duplicates. For an array A of size
N = 10 what fraction of the filled arrays contain no duplicates?
Note your answers will likely vary over repeated trials. In science,
once we introduce chance elements answers to questions like this
get messy.

Chapter 7

More Algorithm Design

In this chapter we extend the algorithms theme, looking at more complex
algorithms with the goal of illustrating how design improvements can affect
the running times dramatically. Different professors may wish to do different
portions and give different emphasis in this part of the course, or perhaps
present different material altogether. Students are advised to check what
material is being covered for the last few lectures in their section of the
course, as it may not be the same as other sections.

7.1 MergeSort

There are many sorting algorithms that we have not considered. Much effort
has been spent over the years in making algorithms that are more efficient
in terms of time and memory used. In an introductory course such as this
we mainly choose algorithms that are reasonably easy to present within the
context of the tools at hand, and which show some underlying principles of
algorithm design.

We judge mergesort to be one of the easier of the O(N log N) (see sub-
section 7.1.4 for what that means) algorithms to understand and explain
at this level, although it is neither the fastest nor best in terms of memory
usage in practice. It is also a good case to study in terms of how seemingly
innocuous design decisions can in fact have a large impact on the efficacy of
the program.

The sorting algorithms previously considered, selection sort 6.2.2 and
insertion sort 6.2.4, maintained a sorted set that was added to one element

185

186 7.1. MERGESORT

at a time from the unsorted portion of the array. In this section we consider
an algorithm that works by creating multiple sorted subparts of the array,
and then merging them in pairs. This process repeats until it is all sorted.

Unlike the previous sorting algorithms, this algorithm is not “in place”
meaning that we need extra arrays to store sorted pieces before merging
them back into the original array. But there is a payback for this extra
memory; this algorithm is much faster for larger arrays, and the bigger the
arrays get, the more it outperforms these other two algorithms.

The general idea of our implementation of merge sorting can be summa-
rized like this:

while not sorted {
find two adjacent sorted subparts in A (called runs)
copy these runs to two separate arrays
merge these back into the array A replacing

the two runs with one combined run
}

The rest of this section will develop these ideas in detail. We assume
throughout that the array we want to sort is called A and that we have two
additional arrays B and C.

7.1.1 Finding and copying the runs

The first step is to identify a run. A run is defined to be a maximal con-
secutive sequence of increasing values in the array. Maximal means that the
run cannot be extended because the next value is smaller.

The first run will start at location 0, that is A[0]. It will continue until
we reach an index i such that A[i] > A[i + 1] or until i + 1 is equal to N , the
number of elements in A. If i < N − 1 then the next run will begin at i + 1.

11 2 3 9 7 6 4 12 10 8 5 1

0 1 2 3 4 5 6 7 8 9 10 11

Figure 7.1: An A with runs indicated.

CHAPTER 7. MORE ALGORITHM DESIGN 187

Figure 7.1 illustrates an array with 12 elements and 9 runs. The first run
consists of the element A[0] = 11. It is maximal because the next element
in A[1] is 2 which is less than 11. The second run is in A[1], A[2], A[3] with
values 2, 3, 9. The remaining runs are indicated by sequences of boxes of the
same shade.

How do we identify and copy a run? We will know which element is the
first since it will either be A[0] or the next element after the previous run,
so all we have to do is copy items until either we reach the end, or until
A[i] > A[i + 1] which ends the run.

Here is the subroutine for copying a run starting at index index a in A
into array B. The Boolean variable flag is used to stop the copying when
the run ends. Note that we initialize flag so that if index a is already at
the end of the array nothing is copied. Otherwise, at least one value will be
in the run, and so if we are not beyond the end of the array, we copy a run
of at least one element. The variable number in B indicates how many
items we copy into B, that is, it is the length of the run. It also gets used
as the index of where to put the next element of the run in B. When the
subroutine completes, index a will be at the beginning of the next run, or
equal to N if the run goes all the way to the end of A.

define copyrunB {
number_in_B = 0
flag = (index_a < N)
while (flag) {

B[number_in_B] = A[index_a]
index_a = index_a + 1
if (index_a >= N) {

flag = false # end of the array
} else {

if (B[number_in_B] > A[index_a]) {
flag = false # next value is smaller so end

}
}
number_in_B = number_in_B + 1

}
}

This routine, and a very similar one called copyrunC for copying a run into
array C, can be found in the file mergesort.txt.

188 7.1. MERGESORT

7.1.2 Merging two sorted arrays

11 2 3 9 7 6 4 12 10 8 5 1

0 1 2 3 4 5 6 7 8 9 10 11

11 2 3 9 B C

A before merge

112 3 9 7 6 4 12 10 8 5 1

0 1 2 3 4 5 6 7 8 9 10 11

A after merge

Merge

copyrunB copyrunC

Figure 7.2: Two runs are copied, and then merged back into A.

Figure 7.2 illustrates how the first two runs should be first copied out
into arrays B and C and then merged in order back into array A. We saw
previously how the copy would be done.

Here is a high level view of how the merge of two arrays should be done:

start an index for each array indicating
the next element in that array
while there are elements in both arrays {

copy the smaller indicated value
and advance that indicator

}

CHAPTER 7. MORE ALGORITHM DESIGN 189

copy the elements from the array that
was not all copied above

72 3 6 119

4 5 8 10 12

2 3 4

B

C

A

Compare

index_b

index_c
index_a

Figure 7.3: One step of a merge into A.

Figure 7.3 illustrates a merge process partially completed. Three ele-
ments have already been copied back into A, two from B and one from C.
The next step will compare the two values 6 in B and 5 in C. Since 5 is
smaller, it will be copied into the indicated position in A, and index a and
index c will each be incremented by one.

If we continue this process, eventually the value 11 in B and 12 in C will
be compared, and the 11 will be copied into A. At that point no further
elements remain from the run in B. Since the values in C are sorted, they
can be copied in order from C into A. In this case there will only be the one
value left in C, but in general there could be any number left.

Below is the implementation of this algorithm in PET which can be found
in the file mergesort.txt.

Merge the contents of arrays B and C
back into A starting at the current index_a
define merge {

index_b = 0

190 7.1. MERGESORT

index_c = 0

while ((index_b < number_in_B) and (index_c < number_in_C)){
if (B[index_b] <= C[index_c]) {

A[index_a] = B[index_b]
index_b = index_b + 1

} else {
A[index_a] = C[index_c]
index_c = index_c +1

}
index_a = index_a + 1

}

clean up the list that was not emptied above
Note: Only one of the following while loops
will execute on any given merge

while (index_b < number_in_B) {
A[index_a] = B[index_b]
index_a = index_a + 1
index_b = index_b + 1

}

while (index_c < number_in_C) {
A[index_a] = C[index_c]
index_a = index_a + 1
index_c = index_c + 1

}
}

7.1.3 Putting it together: Natural MergeSort

We now know how to find runs, copy them out, and merge them back into
A. But a very important design decision remains, and that is in what order
do we do the merges? It seems fairly clear that we can start by merging the
first two runs of the array.

Figure 7.4 illustrates the original A and the result after the first two runs
are merged. Now comes the crucial design decision. We could at this point

CHAPTER 7. MORE ALGORITHM DESIGN 191

11 2 3 9 7 6 4 12 10 8 5 1

0 1 2 3 4 5 6 7 8 9 10 11

112 3 9 7 6 4 12 10 8 5 1

Figure 7.4: A after the merger of the first two runs.

again merge the first two runs, namely the run of 4 cells A[0] . . . A[3] and
the run of one element in A[4]. After that we can again merge the new first
run with the run in A[5] and so on until all the runs are merged. You are
asked to try this technique in the exercise at the end of this chapter labelled
Importance of Order. It turns out this is not a good idea, as you should
discover if you try the exercise.

11 2 3 9 7 6 4 12 10 8 5 1

0 1 2 3 4 5 6 7 8 9 10 11

112 3 9 76 4 10 12 5 8 1

72 3 6 119 4 5 8 10 12 1

52 3 4 76 8 9 10 11 12 1

52 3 4 76 8 9 10 11 121

Pass 1

Initial

Pass 2

Pass 3

Pass 4

Figure 7.5: A trace of mergesort showing the result after each pass.

Instead, we will do merges in passes. On each pass we merge the current
set runs in pairs. This is illustrated in figure 7.5, where the state of the array
is shown after each pass. For example, after pass 1 the first two runs are

192 7.1. MERGESORT

merged into the run 2, 3, 9, 11 the next two runs are merged into 6, 7, the
next two create 4, 10, 12 and the next two create 5, 8. Notice that initially
there were an odd number of runs, and so the run consisting of 1 remains
unchanged since there was no run to pair it with.

On the next pass two merges are done, creating runs 2, 3, 6, 7, 9, 11 and
4, 5, 8, 10, 12 and again leaving 1 isolated because there were an odd number
of runs. Pass 3 merges all but the last element, and pass 4 completes the
sorting.

All that is left are details of implementation. First, when do we know
we are done? Well, if there is only one run in A that means the array is
sorted, so we check to see if on the last pass all elements are copied into
B. If we were a bit more clever we could save one pass by noting when
the previous pass created only one run, but that makes the implementation
more complex, and our goal here is simplicity of presentation over ultimate
efficiency. You may want to think about this as an advanced exercise. In
relation to the diagram in figure 7.5 our poor implementation makes one
more pass to notice that the array is sorted.

Next we need to keep merging pairs until the pass is complete. There are
a few details of remembering where the next pair starts after we complete
the two copies, which we document in the code below.

define mergesort {
number_in_B = 0
as suggested in the notes, the test used in the
following while is simple to understand, but the program
will waste a pass after finishing sorting.
while (number_in_B < N) {
start = 0
start remembers where the next pair of runs begins
when it reaches N, the pass is complete
while (start < N) {

index_a = start
call copyrunB
call copyrunC
a little trick, we have to reset index_a
before calling merge, but we do not want to
forget where the next pair starts,
nextstart = index_a

CHAPTER 7. MORE ALGORITHM DESIGN 193

index_a = start
call merge
start = nextstart

}
}

}

7.1.4 How fast is mergesort?

We say that mergesort sort (as implemented here) is O(N log N). What does
that mean and why is it true?

Recall that if k is the smallest integer such that 2k ≥ N then we say
k is (approximately) log2 N . And as before we use the order (or big-O)
notation O(N log N) to mean that the running time is roughly a constant
times N log N , which is to say a constant times Nk where 2k ≈ N . (≈ means
approximately equal to.)

If you think about it, this means that the running time is growing just a
little faster than proportional to N . For example, if N = 1000 then k ≈ 10,
and so N log N ≈ 10, 000. So the running time is some constant times 10,000.
(The constant may be smaller than 1.) If we let N grow to a million then k
is approximately 20, so the running time increases by approximately a factor
of 1000000×20

1000×10 = 2000. Since going from an array of size 1000 to an array of
size 1000000 is a factor of 1000, you can see that here the growth is twice
linear. But it is significantly less than O(N2).

Here is a table comparing N , N2 and N log N for a few values.

N log2 N N log2 N N2

128 7 896 16384
1024 10 10,240 1,048,576
4096 12 49,152 16,777,216

In summary, O(N log N) is significantly better than O(N2) as the arrays
get larger. For example, for N = 4096 we see that N log2 N is more than
340 times smaller than N2.

But why does it have this behavior? Look again at figure 7.5. Consider
the number of runs at the end of each pass. Initially there are 9 runs, then
5, then 3, then 2 and finally 1. If we ignore the odd one left over at the end,
this becomes 8, 4, 2, 1 (and finally 0). But these are our old friends, the
powers of 2. Why is this? Well, on each pass we merge each successive pair

194 7.1. MERGESORT

of runs into one. So, on each pass we cut the number of runs in half (except
when there is an odd one left over). Now, clearly the initial number of runs
cannot be more than N , since there are only N elements. (You should see
the exercise labeled Worst Case Runs to learn when the number of runs is
exactly N .) Now using the same argument we have used before, if 2k ≥ N ,
we cannot cut N in half more than k times until there is only one run, and
then of course the array is sorted. So we can make at most k passes before
the array is sorted.

Now we only need to consider the work done on each pass. But this is
easy. On a pass every element of A is first copied to either B or C, then some
comparisons are done (at most one per element) and finally the element is
copied back to A. So the total number of steps is at most some constant
times N times k, where k is log2 N .

For arrays of size N = 100 this mergesort takes about 12700 steps. Com-
pare this to the 22600 used by selection sort, or the more than 30000 used
by our original insertion sort, and it looks quite good. When we increase the
array size to N = 1000 our mergesort typically takes approximately 175700
steps in total which is less than 1/10 the number that selection sort typically
takes.

A final note: Importance of Order

In the exercise labeled Importance of Order and the discussion in sec-
tion 7.1.3 we observe that as an alternative algorithm we could repeatedly
merge the first list with the one that follows, but claimed that this was a
bad idea. Briefly here is why it is a bad idea

Suppose that the initial order is such that every element is in a run of
size one (see the exercise labeled Worst Case Runs). For every merge, we
first copy the two lists, one to B and the other to C, and then we copy them
back. But if every run is of size one, then under this ordering of merges,
every merge increases the first run length by 1. For the first merge, we copy
1 into B and back, then the next time 2, then the next time 3 and so on.
The total number of elements copied to B and back is thus 1+2+3+ . . .+N
which, as we have seen several times, is order N squared, i.e. O(N2). So as
N gets large this is much less efficient than merge sort as we implemented it.
Of course, initially the runs are not all of length one, but the average length
of a run initially is typically a small constant or less, so this will only reduce
the run time by a small constant, which means this bad order version is still

CHAPTER 7. MORE ALGORITHM DESIGN 195

O(N2) for random arrays.
Notice how this analysis complements and extends our understanding of

the sorting algorithm. Such depth is a key part of algorithms and computing
science.

7.1.5 Merge Sort Questions

1. [Worst Case Runs] Construct an array with 10 elements in which
there are 10 runs. In general, what property has to be true for an N
element array to have N runs?

2. [Importance of Order] Modify the mergesort subroutine in the file
mergesort.txt so that instead of merging the runs in pairs through a
sequence of complete passes, it instead repeatedly merges the run that
starts in A[0] with the one immediately following it. See the discussion
of figure 7.4 in subsection 7.1.3 to clarify what is required. Note the
program actually gets simpler.

For each of N = 100 and N = 200, compare the number of statements
used by the two versions of mergesort, doing several tests at each size.
See the analysis at the end of section 7.1.4 for an explanation.

3. [Merge Extension] Write an algorithm that merges 3 sorted lists.
Note this does not ask for merge sort, just a merge. But if you are
adventuresome, feel free to write a merge sort that works by merging
sets of up to three runs.

4. [Understanding Merge(trace)] What happens if we run the merge
algorithm on two lists that are not sorted? Suppose B = [2, 4, 7, 13, 5, 8]
and C = [3, 9, 6, 21, 1]. Show the result of running the merge algorithm
on these two arrays. Note you are only running one merge, not merge
sort. Assume index a = 0 when you start.

5. [Trace Merge Sort] Identify the runs in the following array, then
trace the execution of Merge Sort, showing the state to the array after
each complete pass as done in class. Identify the runs as each pass
ends. Note, you may not need the entire diagram. (You can ignore
the wasted last pass in the on line implementation - see the following
exercise).

196 7.1. MERGESORT

13 2 7 5 15 14 9 1

6. [Cosmetic Improvements] As it is currently implemented, there are
a number of improvements one might make to the program in the file
mergesort.txt. Notice that the program terminates after it notices that
the last iteration copied the entire array into the array B then copied
it back. This is wasteful because it copies the entire array into B and
then back into A after it is already sorted. Modify the program so
that if the last pass sorts the array, it stops without this wasteful pass.
What, if anything, can you do about the special case when A is sorted
before the program starts?

We call this a cosmetic improvement because although it reduces the
total cost of sorting, it does not change the O(N log N) worst case,
but only reduces the cost by O(N) work. Still, in practice this can be
worthwhile.

7. [More Cosmetics] In the file mergesort.txt the program uses two
arrays B and C, and both of these must be the size of A since we
cannot predict how long a run may be. However, it is possible to use
just one extra array B. Since two sequential runs can never exceed the
length of A, this array need only be the size of A. The idea is to copy
both runs into B. We just need to keep track of where the run copies
are located in B, then merge them back to A. Modify the program so
that only one extra array is required. You may need to keep track of
a few more indices.

Note: trying to make merge sort use as little extra memory as possible
has been the subject of research for some time.

	Preface
	About
	Target Audience
	Motivation
	Why BB and PET?
	Study Hints

	Introductory Concepts Using BeeperBot
	What is BeeperBot?
	Obtaining BeeperBot (BB)
	Getting Started with BB
	A brief overview of BB's menus
	Programming BeeperBot
	Coding an Initial World
	Programming Language

	Coding Concepts and Terminology
	Tracing Execution
	Two Sample BeeperBot Programs
	Example Program Development
	BeeperBot and the Concept of State
	Illustrating the difference between if and while
	Subroutines, Abstraction and State Diagrams

	Sample BeeperBot Questions
	Tracing Questions
	BeeperBot Programming Questions
	* Advanced Questions

	BeeperBot History

	Representation: Adding Meaning
	Characters and Strings
	Counting and Number Systems
	Unary Arithmetic

	Base Ten Arithmetic
	Counting in Base Ten
	Conversion of Unary to Base Ten
	Addition Base Ten
	Programming BeeperBot to Work in Base Ten

	Base Two or Binary Arithmetic
	Counting in Binary
	Representation and Conversion from Base Ten to Binary
	Conversion of Binary to Base Ten
	Addition in Binary
	Multiplication in Binary

	Binary Number System Variations
	Fractions in Binary
	Finite Binary Representations and Powers of 2
	Two's Complement

	Binary Representation of Characters
	Questions on Representation
	BABA and Text Questions
	Counting Questions
	Arithmetic Questions

	Logic and Circuits
	Boolean Logic
	Elementary Boolean Functions
	Universality of NOT, OR and AND.
	How Many Boolean Functions are There?

	Elementary Boolean Circuits
	General Boolean Functions and Circuits
	Multi-input AND and OR Gates
	The Sum of Products Construction

	Binary Addition using Logic and Circuits
	Chapter 3 Questions

	Program Exploration Tool (PET)
	Architecture
	The von Neumann architecture

	Simplified Model Underlying PET
	PET Language
	Interface
	Comments
	Variables
	Expressions and Assignment
	Control Statements and Subroutines
	Input and Output
	Controlling and Monitoring Code Execution
	Saving and Loading Source Code

	PET Questions

	Algorithms and PET
	What is an algorithm?
	Working definition of Algorithm for CMPUT 101
	Some Examples of Non-Algorithms
	Some Elementary Algorithms

	Conversion Algorithms
	Base Ten to Binary
	Binary to Base Ten

	Searching Algorithms
	Guess a Number Game
	Guess a Number Host
	Illustration of the Binary Search Decision Tree
	Player for Guess a Number: Binary Search

	Algorithm Questions
	From section 5.1
	From section 5.2
	From section 5.3

	Introductory Searching and Sorting
	Sequential Traversal of an Array
	Addition and Other Functions on an Array
	Searching for an Element
	Finding the Maximum in an Array
	Run Time Stats: Find Max
	Why not use binary search?

	Elementary Sorting Algorithms
	Swap
	Selection Sort
	Run time analysis of selection sort
	Insertion Sort
	Run time analysis of insertion sort

	Binary Search of a Sorted Array
	Binary Search analysis

	Exercises on Searching and Sorting

	More Algorithm Design
	MergeSort
	Finding and copying the runs
	Merging two sorted arrays
	Putting it together: Natural MergeSort
	How fast is mergesort?
	Merge Sort Questions

